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Relativistic spin—% particle in presence of a magnetic field of
constant direction B(X) = (0,0, B(x1,x2)), with B € L® (R2:R).

loc
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Relativistic spin—% particle in presence of a magnetic field of
constant direction B(X) = (0,0, B(x1,x2)), with B € L® (R2:R).

loc

Associated Dirac operator in H := L?(R3;C*):
Ho = o Tl + oI + a3 P3 + Pm,

where 3 = xp, &1, &2, &3 are the Dirac-Pauli matrices, m > 0 is
the mass of the particule, and TT; = P; — a; = —10; — a; are the

canonical momenta.
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Relativistic spin—% particle in presence of a magnetic field of
constant direction B(X) = (0,0, B(x1,x2)), with B € L® (R2:R).

loc

Associated Dirac operator in H := L?(R3;C*):
Ho = o Tl + oI + a3 P3 + Pm,

where 3 = xp, &1, &2, &3 are the Dirac-Pauli matrices, m > 0 is
the mass of the particule, and TT; = P; — a; = —10; — a; are the

canonical momenta.

The vector potential @ = (ay, az,0) is chosen such that
aj,a € LY (RZ;R) and B=07a; —0>a;.

loc
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2 Fibered structure of H,

Hy is unitarily equivalent to a fibered operator over R

D D
Ho ZJ d&Hp (&) EJ d& (o1 TTy + oIy + a3 & 4 Bm),
R R

where Ho (&) acts in L?(R?%; C*).
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2 Fibered structure of H,

Hy is unitarily equivalent to a fibered operator over R

D D
Ho ZJ d&Hp (&) EJ d& (o1 TTy + oIy + a3 & 4 Bm),
R R

where Ho (&) acts in L?(R?%; C*).

One has Hp(0) ~ H® @ (—H°) with H® := o4TT; 4+ 0,11, + o3m in
L2(R?%:C?) and 07, 02, 03 the Pauli matrices.
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2 Fibered structure of H,

Hy is unitarily equivalent to a fibered operator over R

D D
Ho ZJ d&Hp (&) EJ d& (o1 TTy + oIy + a3 & 4 Bm),
R R

where Ho (&) acts in L?(R?%; C*).

One has Hp(0) ~ H® @ (—H°) with H® := o4TT; 4+ 0,11, + o3m in
L2(R?%:C?) and 07, 02, 03 the Pauli matrices.

The spectrum of Hy satisfies

o(Hp) = (—oo,—ianGO I] U [ianGO |,oo),

sym sym

where 0%, := o(H®) U o(—HO).

sym
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Figure 1: o

0

sym

and o(Hp) for some B # Const.
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Figure 2: If B(x1,%x2) = Bg > 0, then

% ={EV2nBo+m? | n=0,12,...}
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3 Matrix valued perturbations

The perturbation V : R3 — By, (C*) can be written as
V = Veoulomb + V13 + Vo, Where:
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The perturbation V : R3 — By, (C*) can be written as
V = Veoulomb + V13 + Vo, Where:

® Vcoulomb has compact support and

HVCoulomb (X) th(@zl) S Z
yel

A%

Vx € R3.
x —

for v < 1 and T a finite subset of R3.



8-b/17
3 Matrix valued perturbations

The perturbation V : R3 — By, (C*) can be written as
V = Veoulomb + V13 + Vo, Where:

® Vcoulomb has compact support and

HVCoulomb (X) th(@zl) S Z
yel

vV
x —y|

Vx € R3.

for v < 1 and T a finite subset of R3.

(Several Coulomb potentials with nuclear charge
/ <137 are allowed.)
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The perturbation V : R3 — By, (C*) can be written as
V = Veoulomb + V13 + Vo, Where:

® Vcoulomb has compact support and

HVCoulomb (X) th(@zt) < Z
yel

vV
x —y|

Vx € R3.

for v < 1 and T a finite subset of R3.

(Several Coulomb potentials with nuclear charge
/ <137 are allowed.)

e Vi € (R%Bu(C*) (singularities in L3).
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3 Matrix valued perturbations

The perturbation V : R3 — By, (C*) can be written as
V = Veoulomb + V13 + Vo, Where:

® Vcoulomb has compact support and

HVCoulomb (X) th(@zl) S Z
yel

vV
x —y|

Vx € R3.

for v < 1 and T a finite subset of R3.

(Several Coulomb potentials with nuclear charge
/ <137 are allowed.)

e Vi € (R%Bu(C*) (singularities in L3).

o voo < I—%O (R3a Bh(c4))7 and Voo — Vsgshort-range + Vlong—range with
decay rate only imposed along x3.
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Theorem 4.1. Let g, a, and V be as before. Then:
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4 Theorem

Theorem 4.1. Let lg, a, and V be as before. Then:
1. A H=H*=Ho + V with D(H) C H,/*(R3:C*).

loc
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1. 3 H=H* = Ho + V with D(H) C H,/*(R3;C*).
2. O-ess(]—l) — O-ess(]—lO)-
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Theorem 4.1. Let ]§7 a, and V be as before. Then:

1. 3 H=H* = Ho + V with D(H) C H,/*(R3;C*).
2. O-ess(]—l) — O-ess(]—lO)-

3. opp(H) in R\ Ggym is composed of eigenvalues of finite

multiplicity and with no accumulation point in R\ Ggym.

0

4. H has no singular continuous spectrum in R\ Ogym -
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4 Theorem

Theorem 4.1. Let ]§7 a, and V be as before. Then:

1. 3 H=H* = Ho + V with D(H) C H,/*(R3;C*).
2. O-ess(]—l) — O-ess(]—lO)-

3. opp(H) in R\ Ggym is composed of eigenvalues of finite
0

multiplicity and with no accumulation point in R\ gy,
0

sym *

5. The limits lime~ o <1|), (H—AF ie)_11|)> exist for each

P € D((Q3)1/212), § > 0, uniformly in A on each compact subset of
R\ {0?, ., Uopyp(H)}

sym

4. H has no singular continuous spectrum in R\ o
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4 Theorem

Theorem 4.1. Let ]§7 a, and V be as before. Then:

1. 3 H=H* = Ho + V with D(H) C H,/*(R3;C*).
2. O-ess(]—l) — O-ess(]—lO)-

3. opp(H) in R\ Ggym is composed of eigenvalues of finite
0

multiplicity and with no accumulation point in R\ gy,
0

sym *

5. The limits lime~ o <1|), (H—AF ie)_11|)> exist for each

P € D((Q3)1/212), § > 0, uniformly in A on each compact subset of
R\ {0?, ., Uopyp(H)}

sym

4. H has no singular continuous spectrum in R\ o

(In fact the limiting absorption principle is expressed in terms of an
interpolation space (D(A),H)1,2.1 D D((Q3)'/?7?) for some
conjugate operator A.)
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o(H)
% % WO X X XX H—IEHE
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Figure 3: Example of o(H) for B(x7,x2) = Bg > 0
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(i) We prove a Mourre estimate for Hy.



11-b/17

5 Sketch of the proof

(i) We prove a Mourre estimate for Hy.

(ii) We prove the selfadjointness of H defined as a form sum by
using results of [Nenciu76], [Nenciu77], and [BoutetPurice94| on

selfadjointness for Dirac operators.
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5 Sketch of the proof

(i) We prove a Mourre estimate for Hy.

(ii) We prove the selfadjointness of H defined as a form sum by
using results of [Nenciu76], [Nenciu77], and [BoutetPurice94| on

selfadjointness for Dirac operators.

(iii) We extend to H the Mourre estimate for Ho by using the
commutators methods of [GeorgescuMantoiu01] for strong local

singularities of Dirac operators.
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6 Mourre estimate for H,
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6 Mourre estimate for H,

Possible choice for the conjugate operator:

Ao = % <H51P3Q3 + Q3P3H51) :
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6 Mourre estimate for H,

Possible choice for the conjugate operator:

Ao = % <H51P3Q3 + Q3P3H51) :

The first commutator i [Hg, Ag] extends to the bounded operator

2 : :
(P3H51) . So we can use the partial Fourier transform along x3 to
0

sym'*

get positivity from <P3H51 )2 when localized on o(Hp) \ o
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6 Mourre estimate for H,

Possible choice for the conjugate operator:

Ao = % <H51P3Q3 + Q3P3H51) :

The first commutator i [Hg, Ag] extends to the bounded operator

2 : :
(P3H51) . So we can use the partial Fourier transform along x3 to
0

cle _ 1,2 i
get positivity from (P3 Hy 1) when localized on o(Ho) \ 0,
Drawback: The matrix structure of Ap leads to
unnatural conditions (involving commutators with the
®;’s) when one treats long-range perturbations Vigngrange
of Ho.
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Thus we use the scalar conjugate operator

A = 3[Q3F(P3) + F(P3)Qal,

where

F(x) ,

‘I__
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With this choice we get for ] C (0, 00) bounded and F3 the Fourier
transform along x3:
Eo(J)i[Ho, Al Eo(])

H/_/

matrix
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With this choice we get for ] C (0, 00) bounded and F3 the Fourier
transform along x3:

Eo(J) i[Ho, Al Eo(])
H/—/

matrix

= Eo(J) ilHol, Al Eo(])

7

scalar
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With this choice we get for ] C (0, 00) bounded and F3 the Fourier
transform along x3:

Eo(J) i[Ho, Al Eo(])
H/—/

matrix

= Eo(J) ilHol, Al Eo(])

7

scalar

dE [ (Tl + 0Tl + pm)? + £2)'/%, 9, F(£) + F(£)3¢ | 530 )
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With this choice we get for ] C (0, 00) bounded and F3 the Fourier
transform along x3:

Eo(J) i[Ho, Al Eo(])
H/—/

matrix

= Eo(J) ilHol, Al Eo(])

7

scalar

rD

= —1Fo(NF3" | dE |(Th + eolTy + pm) + £2)'/%, 0, F(&) + F(£)3g | F3Eo ()
JR

rD

— gy ()T da{ — 2F(E)E((oa Ty + ool + Bm)? + 62)_”2}?3150(1)
JR
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With this choice we get for ] C (0, 00) bounded and F3 the Fourier
transform along x3:

Eo(J) i[Ho, Al Eo(])
H/—/

matrix

= Eo(J) ilHol, Al Eo(])

7

scalar

rD

= —1Fo(NF3" | dE |(Th + eolTy + pm) + £2)'/%, 0, F(&) + F(£)3g | F3Eo ()
JR

rD

— gy ()T da{ — 2F(E)E((oa Ty + ool + Bm)? + 62)_”2}?3150(1)
JR

— Eo(J)F(P3)P3[Ho|"Eo(])
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With this choice we get for ] C (0, 00) bounded and F3 the Fourier
transform along x3:

Eo(J) i[Ho, Al Eo(])
H/—/

matrix

= Eo(J) ilHol, Al Eo(])

7

scalar

rD

= —1Fo(NF3" | dE |(Th + eolTy + pm) + £2)'/%, 0, F(&) + F(£)3g | F3Eo ()
JR

rD

— gy ()T ) da{ — 2F(E)E((oa Ty + ool + Bm)? + 62)_”2}?3150(1)

— Eo(J)F(P3)P3[Ho|"Eo(])

— It is sufficient to prove the positivity of the bounded

operator F(P3)P3|Ho|~' when localized on o(Hgp) \ o°

sym °*
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Using 3 and the formula
0[Ho(&)*] = o[Ho(0)* + &*] = (o5"™)* + &7,
we deduce the Mourre estimate

lim sup{a c R|Eo(A;e)i[Hp, AlEg(A;e) > aEg(A; e)}

e\,0
{F(\/Az _ PLZ)\/}\Z _ u2
A

> inf uieogmerAJ}

where Eqg(A;e) ;= Eo((A — ¢, A+ €)).



Using 3 and the formula
0[Ho(&)*] = o[Ho(0)* + &*] = (o5"™)* + &7,
we deduce the Mourre estimate

lim sup{a c R|Eo(A;e)i[Hp, AlEg(A;e) > aEg(A; e)}

e\,0
{F(\/Az _ PLZ)\/}\Z _ u2
A

> inf |u€G§ymﬂ[O,?\]},

where Eqg(A;e) ;= Eo((A — ¢, A+ €)).

15-a/17

The right-hand side is strictly positive for all A € (0, 00) \ 0°

sym -




16/17

7 Some references

e A. Boutet de Monvel and R. Purice. A distinguished self-adjoint
extension for the Dirac operator with strong local singularities and
arbitrary behaviour at infinity. Rep. Math. Phys., 1994.

e V. Georgescu and M. Mantoiu. On the spectral theory of singular
Dirac type hamiltonians. J. Operator Theory, 2001.

e S. Richard and R. Tiedra de Aldecoa. On the spectrum of
magnetic Dirac operators with Coulomb-type perturbations. J.
Funct. Anal., 2007.



17/17

Thank you for your attention!




