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Relativistic spin-1
2

particle in presence of a magnetic field of

constant direction ~B(~x) ≡ (0, 0, B(x1, x2)), with B ∈ L∞
loc(R

2; R).
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Relativistic spin-1
2

particle in presence of a magnetic field of

constant direction ~B(~x) ≡ (0, 0, B(x1, x2)), with B ∈ L∞
loc(R

2; R).

Associated Dirac operator in H := L2(R3; C4):

H0 := α1Π1 + α2Π2 + α3P3 + βm,

where β ≡ α0, α1, α2, α3 are the Dirac-Pauli matrices, m > 0 is

the mass of the particule, and Πj = Pj − aj ≡ −i∂j − aj are the

canonical momenta.
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Relativistic spin-1
2

particle in presence of a magnetic field of

constant direction ~B(~x) ≡ (0, 0, B(x1, x2)), with B ∈ L∞
loc(R

2; R).

Associated Dirac operator in H := L2(R3; C4):

H0 := α1Π1 + α2Π2 + α3P3 + βm,

where β ≡ α0, α1, α2, α3 are the Dirac-Pauli matrices, m > 0 is

the mass of the particule, and Πj = Pj − aj ≡ −i∂j − aj are the

canonical momenta.

The vector potential ~a = (a1, a2, 0) is chosen such that

a1, a2 ∈ L∞
loc(R

2; R) and B = ∂1a2 − ∂2a1.
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2 Fibered structure of H0

H0 is unitarily equivalent to a fibered operator over R

H0 ≃

∫⊕

R

dξH0(ξ) ≡

∫⊕

R

dξ (α1Π1 + α2Π2 + α3ξ+ βm) ,

where H0(ξ) acts in L2(R2; C4).
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2 Fibered structure of H0

H0 is unitarily equivalent to a fibered operator over R

H0 ≃

∫⊕

R

dξH0(ξ) ≡

∫⊕

R

dξ (α1Π1 + α2Π2 + α3ξ+ βm) ,

where H0(ξ) acts in L2(R2; C4).

One has H0(0) ≃ H0 ⊕ (−H0) with H0 := σ1Π1 + σ2Π2 + σ3m in

L2(R2; C2) and σ1, σ2, σ3 the Pauli matrices.

The spectrum of H0 satisfies

σ(H0) =
(

− ∞,− inf |σ0
sym|

]

∪
[

inf |σ0
sym|,∞

)

,

where σ0
sym := σ(H0) ∪ σ(−H0).
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R0 +m−m

σ
sym
0

σ(H0)

Figure 1: σ0
sym and σ(H0) for some B 6= Const.
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−
√

3B0 + m2 +
√

3B0 + m2+
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2B0 + m2

σ(H0)

σ0
sym

R

+m0−m−
√

2B0 + m2

Figure 2: If B(x1, x2) = B0 > 0, then

σ0
sym =

{
±

√

2nB0 +m2 | n = 0, 1, 2, . . .
}
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3 Matrix valued perturbations

The perturbation V : R
3 → Bh(C4) can be written as

V = VCoulomb + VL3 + V∞ , where:
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3 Matrix valued perturbations

The perturbation V : R
3 → Bh(C4) can be written as

V = VCoulomb + VL3 + V∞ , where:

• VCoulomb has compact support and

∥

∥VCoulomb(x)
∥

∥

Bh(C4)
≤

∑

y∈Γ

ν

|x− y|
∀x ∈ R

3.

for ν < 1 and Γ a finite subset of R
3.

(Several Coulomb potentials with nuclear charge

Z ≤ 137 are allowed.)

• VL3 ∈ L3
c

(

R3; Bh(C4)
)

(singularities in L3).

• V∞ ∈ L∞
0

(

R3; Bh(C4)
)

, and V∞ = Vshort-range + Vlong-range with

decay rate only imposed along x3.
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4 Theorem

Theorem 4.1. Let ~B, ~a, and V be as before. Then:
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1. ∃! H = H∗ = H0 + V with D(H) ⊂ H
1/2

loc (R3; C4).
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4 Theorem

Theorem 4.1. Let ~B, ~a, and V be as before. Then:

1. ∃! H = H∗ = H0 + V with D(H) ⊂ H
1/2

loc (R3; C4).

2. σess(H) = σess(H0).

3. σpp(H) in R \ σ0
sym is composed of eigenvalues of finite

multiplicity and with no accumulation point in R \ σ0
sym.

4. H has no singular continuous spectrum in R \ σ0
sym.

5. The limits limεց0

〈

ψ, (H− λ∓ iε)−1ψ
〉

exist for each

ψ ∈ D(〈Q3〉
1/2+δ), δ > 0, uniformly in λ on each compact subset of

R \ {σ0
sym ∪ σpp(H)}.



9-f/17

4 Theorem

Theorem 4.1. Let ~B, ~a, and V be as before. Then:

1. ∃! H = H∗ = H0 + V with D(H) ⊂ H
1/2

loc (R3; C4).

2. σess(H) = σess(H0).

3. σpp(H) in R \ σ0
sym is composed of eigenvalues of finite

multiplicity and with no accumulation point in R \ σ0
sym.

4. H has no singular continuous spectrum in R \ σ0
sym.

5. The limits limεց0

〈

ψ, (H− λ∓ iε)−1ψ
〉

exist for each

ψ ∈ D(〈Q3〉
1/2+δ), δ > 0, uniformly in λ on each compact subset of

R \ {σ0
sym ∪ σpp(H)}.

(In fact the limiting absorption principle is expressed in terms of an

interpolation space (D(A),H)1/2,1 ⊃ D(〈Q3〉
1/2+δ) for some

conjugate operator A.)
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−
√

3B0 + m2 +
√
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sym

R
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√
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Figure 3: Example of σ(H) for B(x1, x2) = B0 > 0
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5 Sketch of the proof

(i) We prove a Mourre estimate for H0.

(ii) We prove the selfadjointness of H defined as a form sum by

using results of [Nenciu76], [Nenciu77], and [BoutetPurice94] on

selfadjointness for Dirac operators.
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5 Sketch of the proof

(i) We prove a Mourre estimate for H0.

(ii) We prove the selfadjointness of H defined as a form sum by

using results of [Nenciu76], [Nenciu77], and [BoutetPurice94] on

selfadjointness for Dirac operators.

(iii) We extend to H the Mourre estimate for H0 by using the

commutators methods of [GeorgescuMăntoiu01] for strong local

singularities of Dirac operators.
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6 Mourre estimate for H0
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6 Mourre estimate for H0

Possible choice for the conjugate operator:

A0 := 1
2

(

H−1
0 P3Q3 +Q3P3H

−1
0

)

.
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(

P3H
−1
0

)2
. So we can use the partial Fourier transform along x3 to
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when localized on σ(H0) \ σ0
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6 Mourre estimate for H0

Possible choice for the conjugate operator:

A0 := 1
2

(

H−1
0 P3Q3 +Q3P3H

−1
0

)

.

The first commutator i [H0, A0] extends to the bounded operator
(

P3H
−1
0

)2
. So we can use the partial Fourier transform along x3 to

get positivity from
(

P3H
−1
0

)2
when localized on σ(H0) \ σ0

sym.

Drawback: The matrix structure of A0 leads to

unnatural conditions (involving commutators with the

αj’s) when one treats long-range perturbations Vlong-range

of H0.
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Thus we use the scalar conjugate operator

A := 1
2
[Q3F(P3) + F(P3)Q3],

where

1

F(x)

1

0 x
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With this choice we get for J ⊂ (0,∞) bounded and F3 the Fourier

transform along x3:

E0(J) i[H0, A]︸ ︷︷ ︸
matrix

E0(J)
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With this choice we get for J ⊂ (0,∞) bounded and F3 the Fourier

transform along x3:

E0(J) i[H0, A]︸ ︷︷ ︸
matrix

E0(J)

= E0(J) i[|H0|, A]︸ ︷︷ ︸
scalar

E0(J)
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With this choice we get for J ⊂ (0,∞) bounded and F3 the Fourier
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With this choice we get for J ⊂ (0,∞) bounded and F3 the Fourier

transform along x3:

E0(J) i[H0, A]︸ ︷︷ ︸
matrix

E0(J)

= E0(J) i[|H0|, A]︸ ︷︷ ︸
scalar

E0(J)

= −1
2
E0(J)F−1

3
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R

dξ
[

(

α1Π1 + α2Π2 + βm)2 + ξ2
)1/2

, ∂ξF(ξ) + F(ξ)∂ξ

]

F3E0(J)

= −1
2
E0(J)F−1

3

∫⊕

R

dξ
{

− 2F(ξ)ξ
(

(α1Π1 + α2Π2 + βm)2 + ξ2
)−1/2

}
F3E0(J)

= E0(J)F(P3)P3|H0|−1E0(J)

=⇒ It is sufficient to prove the positivity of the bounded

operator F(P3)P3|H0|−1 when localized on σ(H0) \ σ0
sym.
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Using F3 and the formula

σ
[

H0(ξ)2
]

= σ
[

H0(0)2 + ξ2
]

= (σ
sym
0 )2 + ξ2,

we deduce the Mourre estimate

lim
εց0

sup
{
a ∈ R | E0(λ; ε)i[H0, A]E0(λ; ε) ≥ aE0(λ; ε)

}

≥ inf

{
F
(
√

λ2 − µ2
)
√

λ2 − µ2

λ
| µ ∈ σ0

sym ∩ [0, λ]

}
,

where E0(λ; ε) := E0((λ− ε, λ+ ε)).
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Using F3 and the formula

σ
[

H0(ξ)2
]

= σ
[

H0(0)2 + ξ2
]

= (σ
sym
0 )2 + ξ2,

we deduce the Mourre estimate

lim
εց0

sup
{
a ∈ R | E0(λ; ε)i[H0, A]E0(λ; ε) ≥ aE0(λ; ε)

}

≥ inf

{
F
(
√

λ2 − µ2
)
√

λ2 − µ2

λ
| µ ∈ σ0

sym ∩ [0, λ]

}
,

where E0(λ; ε) := E0((λ− ε, λ+ ε)).

The right-hand side is strictly positive for all λ ∈ (0,∞) \ σ0
sym.
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Thank you for your attention!


