Magnetic Dirac operators with Coulomb-type perturbations

Serge Richard (Lyon)
Rafael Tiedra de Aldecoa (Cergy-Pontoise)

CIRM, July 2008

Contents

1 Set-up 3
2 Fibered structure of H_{0} 5
3 Matrix valued perturbations 8
4 Theorem 9
5 Sketch of the proof 11
6 Mourre estimate for H_{0} 12
7 Some references 16

1 Set-up

Relativistic spin- $\frac{1}{2}$ particle in presence of a magnetic field of constant direction $\vec{B}(\vec{x}) \equiv\left(0,0, B\left(x_{1}, x_{2}\right)\right)$, with $B \in \mathrm{~L}_{\text {loc }}^{\infty}\left(\mathbb{R}^{2} ; \mathbb{R}\right)$.

Relativistic spin- $\frac{1}{2}$ particle in presence of a magnetic field of constant direction $\vec{B}(\vec{x}) \equiv\left(0,0, B\left(x_{1}, x_{2}\right)\right)$, with $B \in \mathrm{~L}_{\text {loc }}^{\infty}\left(\mathbb{R}^{2} ; \mathbb{R}\right)$.

Associated Dirac operator in $\mathcal{H}:=L^{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$:

$$
\mathrm{H}_{0}:=\alpha_{1} \Pi_{1}+\alpha_{2} \Pi_{2}+\alpha_{3} P_{3}+\beta m,
$$

where $\beta \equiv \alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}$ are the Dirac-Pauli matrices, $\mathfrak{m}>0$ is the mass of the particule, and $\Pi_{j}=P_{j}-a_{j} \equiv-i \partial_{j}-a_{j}$ are the canonical momenta.

Relativistic spin- $\frac{1}{2}$ particle in presence of a magnetic field of constant direction $\vec{B}(\vec{x}) \equiv\left(0,0, B\left(x_{1}, x_{2}\right)\right)$, with $B \in \mathrm{~L}_{\text {loc }}^{\infty}\left(\mathbb{R}^{2} ; \mathbb{R}\right)$.

Associated Dirac operator in $\mathcal{H}:=L^{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$:

$$
H_{0}:=\alpha_{1} \Pi_{1}+\alpha_{2} \Pi_{2}+\alpha_{3} P_{3}+\beta m,
$$

where $\beta \equiv \alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}$ are the Dirac-Pauli matrices, $m>0$ is the mass of the particule, and $\Pi_{j}=P_{j}-a_{j} \equiv-i \partial_{j}-a_{j}$ are the canonical momenta.

The vector potential $\vec{a}=\left(a_{1}, a_{2}, 0\right)$ is chosen such that $a_{1}, a_{2} \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{2} ; \mathbb{R}\right)$ and $B=\partial_{1} a_{2}-\partial_{2} a_{1}$.

2 Fibered structure of H_{0}

H_{0} is unitarily equivalent to a fibered operator over \mathbb{R}

$$
\mathrm{H}_{0} \simeq \int_{\mathbb{R}}^{\oplus} \mathrm{d} \xi \mathrm{H}_{0}(\xi) \equiv \int_{\mathbb{R}}^{\oplus} \mathrm{d} \xi\left(\alpha_{1} \Pi_{1}+\alpha_{2} \Pi_{2}+\alpha_{3} \xi+\beta m\right)
$$

where $H_{0}(\xi)$ acts in $L^{2}\left(\mathbb{R}^{2} ; \mathbb{C}^{4}\right)$.

2 Fibered structure of H_{0}

H_{0} is unitarily equivalent to a fibered operator over \mathbb{R}

$$
\mathrm{H}_{0} \simeq \int_{\mathbb{R}}^{\oplus} \mathrm{d} \xi \mathrm{H}_{0}(\xi) \equiv \int_{\mathbb{R}}^{\oplus} \mathrm{d} \xi\left(\alpha_{1} \Pi_{1}+\alpha_{2} \Pi_{2}+\alpha_{3} \xi+\beta m\right)
$$

where $H_{0}(\xi)$ acts in $L^{2}\left(\mathbb{R}^{2} ; \mathbb{C}^{4}\right)$.

One has $H_{0}(0) \simeq H^{0} \oplus\left(-H^{0}\right)$ with $H^{0}:=\sigma_{1} \Pi_{1}+\sigma_{2} \Pi_{2}+\sigma_{3} m$ in $\mathrm{L}^{2}\left(\mathbb{R}^{2} ; \mathbb{C}^{2}\right)$ and $\sigma_{1}, \sigma_{2}, \sigma_{3}$ the Pauli matrices.

2 Fibered structure of H_{0}

H_{0} is unitarily equivalent to a fibered operator over \mathbb{R}

$$
\mathrm{H}_{0} \simeq \int_{\mathbb{R}}^{\oplus} \mathrm{d} \xi \mathrm{H}_{0}(\xi) \equiv \int_{\mathbb{R}}^{\oplus} \mathrm{d} \xi\left(\alpha_{1} \Pi_{1}+\alpha_{2} \Pi_{2}+\alpha_{3} \xi+\beta m\right)
$$

where $H_{0}(\xi)$ acts in $L^{2}\left(\mathbb{R}^{2} ; \mathbb{C}^{4}\right)$.

One has $\mathrm{H}_{0}(0) \simeq \mathrm{H}^{0} \oplus\left(-\mathrm{H}^{0}\right)$ with $\mathrm{H}^{0}:=\sigma_{1} \Pi_{1}+\sigma_{2} \Pi_{2}+\sigma_{3} m$ in $\mathrm{L}^{2}\left(\mathbb{R}^{2} ; \mathbb{C}^{2}\right)$ and $\sigma_{1}, \sigma_{2}, \sigma_{3}$ the Pauli matrices.

The spectrum of H_{0} satisfies

$$
\sigma\left(\mathrm{H}_{0}\right)=\left(-\infty,-\inf \left|\sigma_{\mathrm{sym}}^{0}\right|\right] \cup\left[\inf \left|\sigma_{\mathrm{sym}}^{0}\right|, \infty\right),
$$

where $\sigma_{\text {sym }}^{0}:=\sigma\left(\mathrm{H}^{0}\right) \cup \sigma\left(-\mathrm{H}^{0}\right)$.

Figure 1: $\sigma_{\text {sym }}^{0}$ and $\sigma\left(H_{0}\right)$ for some $B \neq$ Const.

Figure 2: If $B\left(x_{1}, x_{2}\right)=B_{0}>0$, then

$$
\sigma_{\text {sym }}^{0}=\left\{ \pm \sqrt{2 \mathrm{nB}_{0}+\mathrm{m}^{2}} \mid \mathrm{n}=0,1,2, \ldots\right\}
$$

3 Matrix valued perturbations

The perturbation $V: \mathbb{R}^{3} \rightarrow \mathcal{B}_{h}\left(\mathbb{C}^{4}\right)$ can be written as
$\mathrm{V}=\mathrm{V}_{\text {Coulomb }}+\mathrm{V}_{\mathrm{L}^{3}}+\mathrm{V}_{\infty}$, where:

3 Matrix valued perturbations

The perturbation $V: \mathbb{R}^{3} \rightarrow \mathcal{B}_{h}\left(\mathbb{C}^{4}\right)$ can be written as $\mathrm{V}=\mathrm{V}_{\text {Coulomb }}+\mathrm{V}_{\mathrm{L}^{3}}+\mathrm{V}_{\infty}$, where:

- $\mathrm{V}_{\text {Coulomb }}$ has compact support and

$$
\left\|V_{\text {Coulomb }}(x)\right\|_{\mathcal{B}_{h}\left(\mathbb{C}^{4}\right)} \leq \sum_{y \in \Gamma} \frac{v}{|x-y|} \quad \forall x \in \mathbb{R}^{3} .
$$

for $v<1$ and Γ a finite subset of \mathbb{R}^{3}.

3 Matrix valued perturbations

The perturbation $V: \mathbb{R}^{3} \rightarrow \mathcal{B}_{h}\left(\mathbb{C}^{4}\right)$ can be written as $\mathrm{V}=\mathrm{V}_{\text {Coulomb }}+\mathrm{V}_{\mathrm{L}^{3}}+\mathrm{V}_{\infty}$, where:

- $\mathrm{V}_{\text {Coulomb }}$ has compact support and

$$
\left\|V_{\text {Coulomb }}(x)\right\|_{\mathcal{B}_{h}\left(\mathbb{C}^{4}\right)} \leq \sum_{y \in \Gamma} \frac{v}{|x-y|} \quad \forall x \in \mathbb{R}^{3} .
$$

for $v<1$ and Γ a finite subset of \mathbb{R}^{3}.
(Several Coulomb potentials with nuclear charge $Z \leq 137$ are allowed.)

3 Matrix valued perturbations

The perturbation $V: \mathbb{R}^{3} \rightarrow \mathcal{B}_{h}\left(\mathbb{C}^{4}\right)$ can be written as
$\mathrm{V}=\mathrm{V}_{\text {Coulomb }}+\mathrm{V}_{\mathrm{L}^{3}}+\mathrm{V}_{\infty}$, where:

- $\mathrm{V}_{\text {Coulomb }}$ has compact support and

$$
\left\|V_{\text {Coulomb }}(x)\right\|_{\mathcal{B}_{h}\left(\mathbb{C}^{4}\right)} \leq \sum_{y \in \Gamma} \frac{v}{|x-y|} \quad \forall x \in \mathbb{R}^{3} .
$$

for $v<1$ and Γ a finite subset of \mathbb{R}^{3}.
(Several Coulomb potentials with nuclear charge $Z \leq 137$ are allowed.)

- $V_{L^{3}} \in L_{c}^{3}\left(\mathbb{R}^{3} ; \mathcal{B}_{h}\left(\mathbb{C}^{4}\right)\right) \quad$ (singularities in $\left.L^{3}\right)$.

3 Matrix valued perturbations

The perturbation $V: \mathbb{R}^{3} \rightarrow \mathcal{B}_{h}\left(\mathbb{C}^{4}\right)$ can be written as
$\mathrm{V}=\mathrm{V}_{\text {Coulomb }}+\mathrm{V}_{\mathrm{L}^{3}}+\mathrm{V}_{\infty}$, where:

- $\mathrm{V}_{\text {Coulomb }}$ has compact support and

$$
\left\|V_{\text {Coulomb }}(x)\right\|_{\mathcal{B}_{h}\left(\mathbb{C}^{4}\right)} \leq \sum_{y \in \Gamma} \frac{v}{|x-y|} \quad \forall x \in \mathbb{R}^{3} .
$$

for $v<1$ and Γ a finite subset of \mathbb{R}^{3}.
(Several Coulomb potentials with nuclear charge $Z \leq 137$ are allowed.)

- $V_{L^{3}} \in L_{c}^{3}\left(\mathbb{R}^{3} ; \mathcal{B}_{h}\left(\mathbb{C}^{4}\right)\right) \quad$ (singularities in $\left.L^{3}\right)$.
- $\mathrm{V}_{\infty} \in \mathrm{L}_{0}^{\infty}\left(\mathbb{R}^{3} ; \mathcal{B}_{\mathrm{h}}\left(\mathbb{C}^{4}\right)\right)$, and $\mathrm{V}_{\infty}=\mathrm{V}_{\text {short-range }}+\mathrm{V}_{\text {long-range }}$ with decay rate only imposed along x_{3}.

4 Theorem

Theorem 4.1. Let $\overrightarrow{\mathrm{B}}, \overrightarrow{\mathrm{a}}$, and \vee be as before. Then:

4 Theorem

Theorem 4.1. Let $\overrightarrow{\mathrm{B}}, \overrightarrow{\mathrm{a}}$, and V be as before. Then:

1. \exists ! $\mathrm{H}=\mathrm{H}^{*}=\mathrm{H}_{0}+\mathrm{V}$ with $\mathcal{D}(\mathrm{H}) \subset \mathcal{H}_{\mathrm{loc}}^{1 / 2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$.

4 Theorem

Theorem 4.1. Let $\overrightarrow{\mathrm{B}}, \overrightarrow{\mathrm{a}}$, and \vee be as before. Then:

1. \exists ! $\mathrm{H}=\mathrm{H}^{*}=\mathrm{H}_{0}+\mathrm{V}$ with $\mathcal{D}(\mathrm{H}) \subset \mathcal{H}_{\mathrm{loc}}^{1 / 2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$.
2. $\sigma_{\text {ess }}(H)=\sigma_{\text {ess }}\left(\mathrm{H}_{0}\right)$.

4 Theorem

Theorem 4.1. Let $\overrightarrow{\mathrm{B}}, \overrightarrow{\mathrm{a}}$, and V be as before. Then:

1. $\exists!\mathrm{H}=\mathrm{H}^{*}=\mathrm{H}_{0}+\mathrm{V}$ with $\mathcal{D}(\mathrm{H}) \subset \mathcal{H}_{\mathrm{loc}}^{1 / 2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$.
2. $\sigma_{\text {ess }}(\mathrm{H})=\sigma_{\text {ess }}\left(\mathrm{H}_{0}\right)$.
3. $\sigma_{\mathrm{pp}}(\mathrm{H})$ in $\mathbb{R} \backslash \sigma_{\mathrm{sym}}^{0}$ is composed of eigenvalues of finite multiplicity and with no accumulation point in $\mathbb{R} \backslash \sigma_{\text {sym }}^{0}$.

4 Theorem

Theorem 4.1. Let $\overrightarrow{\mathrm{B}}, \overrightarrow{\mathrm{a}}$, and V be as before. Then:

1. $\exists!\mathrm{H}=\mathrm{H}^{*}=\mathrm{H}_{0}+\mathrm{V}$ with $\mathcal{D}(\mathrm{H}) \subset \mathcal{H}_{\mathrm{loc}}^{1 / 2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$.
2. $\sigma_{\text {ess }}(\mathrm{H})=\sigma_{\text {ess }}\left(\mathrm{H}_{0}\right)$.
3. $\sigma_{\mathrm{pp}}(\mathrm{H})$ in $\mathbb{R} \backslash \sigma_{\mathrm{sym}}^{0}$ is composed of eigenvalues of finite multiplicity and with no accumulation point in $\mathbb{R} \backslash \sigma_{\mathrm{sym}}^{0}$.
4. H has no singular continuous spectrum in $\mathbb{R} \backslash \sigma_{\text {sym }}^{0}$.

4 Theorem

Theorem 4.1. Let $\overrightarrow{\mathrm{B}}, \overrightarrow{\mathrm{a}}$, and V be as before. Then:

1. $\exists!\mathrm{H}=\mathrm{H}^{*}=\mathrm{H}_{0}+\mathrm{V}$ with $\mathcal{D}(\mathrm{H}) \subset \mathcal{H}_{\mathrm{loc}}^{1 / 2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$.
2. $\sigma_{\text {ess }}(\mathrm{H})=\sigma_{\text {ess }}\left(\mathrm{H}_{0}\right)$.
3. $\sigma_{\mathrm{pp}}(\mathrm{H})$ in $\mathbb{R} \backslash \sigma_{\mathrm{sym}}^{0}$ is composed of eigenvalues of finite multiplicity and with no accumulation point in $\mathbb{R} \backslash \sigma_{\text {sym }}^{0}$.
4. H has no singular continuous spectrum in $\mathbb{R} \backslash \sigma_{\mathrm{sym}}^{0}$.
5. The limits $\lim _{\varepsilon \searrow 0}\left\langle\psi,(\mathrm{H}-\lambda \mp \mathfrak{i} \varepsilon)^{-1} \psi\right\rangle$ exist for each $\psi \in \mathcal{D}\left(\left\langle\mathrm{Q}_{3}\right\rangle^{1 / 2+\delta}\right), \delta>0$, uniformly in λ on each compact subset of $\mathbb{R} \backslash\left\{\sigma_{\mathrm{sym}}^{0} \cup \sigma_{\mathrm{pp}}(\mathrm{H})\right\}$.

4 Theorem

Theorem 4.1. Let $\overrightarrow{\mathrm{B}}, \overrightarrow{\mathrm{a}}$, and \vee be as before. Then:

1. $\exists!\mathrm{H}=\mathrm{H}^{*}=\mathrm{H}_{0}+\mathrm{V}$ with $\mathcal{D}(\mathrm{H}) \subset \mathcal{H}_{\mathrm{loc}}^{1 / 2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$.
2. $\sigma_{\text {ess }}(\mathrm{H})=\sigma_{\text {ess }}\left(\mathrm{H}_{0}\right)$.
3. $\sigma_{\mathrm{pp}}(\mathrm{H})$ in $\mathbb{R} \backslash \sigma_{\mathrm{sym}}^{0}$ is composed of eigenvalues of finite multiplicity and with no accumulation point in $\mathbb{R} \backslash \sigma_{\text {sym }}^{0}$.
4. H has no singular continuous spectrum in $\mathbb{R} \backslash \sigma_{\mathrm{sym}}^{0}$.
5. The limits $\lim _{\varepsilon \searrow 0}\left\langle\psi,(\mathrm{H}-\lambda \mp \mathfrak{i} \varepsilon)^{-1} \psi\right\rangle$ exist for each $\psi \in \mathcal{D}\left(\left\langle\mathrm{Q}_{3}\right\rangle^{1 / 2+\delta}\right), \delta>0$, uniformly in λ on each compact subset of $\mathbb{R} \backslash\left\{\sigma_{\text {sym }}^{0} \cup \sigma_{\mathrm{pp}}(\mathrm{H})\right\}$.
(In fact the limiting absorption principle is expressed in terms of an interpolation space $(\mathcal{D}(\mathcal{A}), \mathcal{H})_{1 / 2,1} \supset \mathcal{D}\left(\left\langle\mathrm{Q}_{3}\right\rangle^{1 / 2+\delta}\right)$ for some conjugate operator A.)

Figure 3: Example of $\sigma(H)$ for $B\left(x_{1}, x_{2}\right)=B_{0}>0$

5 Sketch of the proof

5 Sketch of the proof

(i) We prove a Mourre estimate for H_{0}.

5 Sketch of the proof

(i) We prove a Mourre estimate for H_{0}.
(ii) We prove the selfadjointness of H defined as a form sum by using results of [Nenciu76], [Nenciu77], and [BoutetPurice94] on selfadjointness for Dirac operators.

5 Sketch of the proof

(i) We prove a Mourre estimate for H_{0}.
(ii) We prove the selfadjointness of H defined as a form sum by using results of [Nenciu76], [Nenciu77], and [BoutetPurice94] on selfadjointness for Dirac operators.
(iii) We extend to H the Mourre estimate for H_{0} by using the commutators methods of [GeorgescuMăntoiu01] for strong local singularities of Dirac operators.

6 Mourre estimate for H_{0}

6 Mourre estimate for H_{0}

Possible choice for the conjugate operator:

$$
A_{0}:=\frac{1}{2}\left(H_{0}^{-1} \mathrm{P}_{3} \mathrm{Q}_{3}+\mathrm{Q}_{3} \mathrm{P}_{3} \mathrm{H}_{0}^{-1}\right) .
$$

6 Mourre estimate for H_{0}

Possible choice for the conjugate operator:

$$
A_{0}:=\frac{1}{2}\left(H_{0}^{-1} \mathrm{P}_{3} \mathrm{Q}_{3}+\mathrm{Q}_{3} \mathrm{P}_{3} \mathrm{H}_{0}^{-1}\right) .
$$

The first commutator $i\left[H_{0}, A_{0}\right]$ extends to the bounded operator $\left(\mathrm{P}_{3} \mathrm{H}_{0}^{-1}\right)^{2}$. So we can use the partial Fourier transform along x_{3} to get positivity from $\left(\mathrm{P}_{3} \mathrm{H}_{0}^{-1}\right)^{2}$ when localized on $\sigma\left(\mathrm{H}_{0}\right) \backslash \sigma_{\text {sym }}^{0}$.

6 Mourre estimate for H_{0}

Possible choice for the conjugate operator:

$$
A_{0}:=\frac{1}{2}\left(H_{0}^{-1} \mathrm{P}_{3} \mathrm{Q}_{3}+\mathrm{Q}_{3} \mathrm{P}_{3} \mathrm{H}_{0}^{-1}\right) .
$$

The first commutator $\mathfrak{i}\left[\mathrm{H}_{0}, A_{0}\right]$ extends to the bounded operator $\left(\mathrm{P}_{3} \mathrm{H}_{0}^{-1}\right)^{2}$. So we can use the partial Fourier transform along x_{3} to get positivity from $\left(\mathrm{P}_{3} \mathrm{H}_{0}^{-1}\right)^{2}$ when localized on $\sigma\left(\mathrm{H}_{0}\right) \backslash \sigma_{\text {sym }}^{0}$.

Drawback: The matrix structure of A_{0} leads to unnatural conditions (involving commutators with the α_{j} 's) when one treats long-range perturbations $V_{\text {long-range }}$ of H_{0}.

Thus we use the scalar conjugate operator

$$
A:=\frac{1}{2}\left[Q_{3} F\left(P_{3}\right)+F\left(P_{3}\right) Q_{3}\right],
$$

where

With this choice we get for $\mathrm{J} \subset(0, \infty)$ bounded and \mathcal{F}_{3} the Fourier transform along x_{3} :

$\mathrm{E}_{0}(\mathrm{~J}) \underbrace{\mathfrak{i}\left[\mathrm{H}_{0}, \mathrm{~A}\right]}_{\text {matrix }} \mathrm{E}_{0}(\mathrm{~J})$

With this choice we get for $\mathrm{J} \subset(0, \infty)$ bounded and \mathcal{F}_{3} the Fourier transform along x_{3} :

$$
\begin{aligned}
& E_{0}(J) \underbrace{i\left[H_{0}, A\right]}_{\text {matrix }} E_{0}(J) \\
& =E_{0}(J) \underbrace{i\left[\left|H_{0}\right|, A\right]}_{\text {scalar }} E_{0}(J)
\end{aligned}
$$

With this choice we get for $\mathrm{J} \subset(0, \infty)$ bounded and \mathcal{F}_{3} the Fourier transform along x_{3} :

$$
\begin{aligned}
& E_{0}(J) \underbrace{i\left[H_{0}, A\right]}_{\text {matrix }} E_{0}(J) \\
& =E_{0}(J) \underbrace{i\left[\left|H_{0}\right|, A\right]}_{\text {scalar }} E_{0}(J) \\
& \left.=-\frac{1}{2} E_{0}(J) \mathcal{F}_{3}^{-1} \int_{\mathbb{R}}^{\oplus} d \xi\left[\left(\alpha_{1} \Pi_{1}+\alpha_{2} \Pi_{2}+\beta m\right)^{2}+\xi^{2}\right)^{1 / 2}, \partial_{\xi} F(\xi)+F(\xi) \partial_{\xi}\right] \mathcal{F}_{3} E_{0}(J)
\end{aligned}
$$

With this choice we get for $\mathrm{J} \subset(0, \infty)$ bounded and \mathcal{F}_{3} the Fourier transform along x_{3} :

$$
\begin{aligned}
& E_{0}(J) \underbrace{i\left[H_{0}, A\right]}_{\text {matrix }} E_{0}(J) \\
& =E_{0}(J) \underbrace{i\left[\mid\left[H_{0} \mid, A\right]\right.}_{\text {scalar }} E_{0}(J) \\
& \left.=-\frac{1}{2} E_{0}(J) \mathcal{F}_{3}^{-1} \int_{\mathbb{R}}^{\oplus} d \xi\left[\left(\alpha_{1} \Pi_{1}+\alpha_{2} \Pi_{2}+\beta m\right)^{2}+\xi^{2}\right)^{1 / 2}, \partial_{\xi} F(\xi)+F(\xi) \partial_{\xi}\right] \mathcal{F}_{3} E_{0}(J) \\
& =-\frac{1}{2} E_{0}(J) \mathcal{F}_{3}^{-1} \int_{\mathbb{R}}^{\oplus} d \xi\left\{-2 F(\xi) \xi\left(\left(\alpha_{1} \Pi_{1}+\alpha_{2} \Pi_{2}+\beta m\right)^{2}+\xi^{2}\right)^{-1 / 2}\right\} \mathcal{F}_{3} E_{0}(J)
\end{aligned}
$$

With this choice we get for $\mathrm{J} \subset(0, \infty)$ bounded and \mathcal{F}_{3} the Fourier transform along x_{3} :

$$
\begin{aligned}
& E_{0}(J) \underbrace{i\left[\left[H_{0}, A\right]\right.}_{\text {matrix }} E_{0}(J) \\
& =E_{0}(J) \underbrace{\dot{i}\left[H_{0} \mid, A\right]}_{\text {scalar }} E_{0}(J) \\
& \left.=-\frac{1}{2} E_{0}(J) \mathcal{F}_{3}^{-1} \int_{\mathbb{R}}^{\oplus} d \xi\left[\left(\alpha_{1} \Pi_{1}+\alpha_{2} \Pi_{2}+\beta m\right)^{2}+\xi^{2}\right)^{1 / 2}, \partial_{\xi} F(\xi)+F(\xi) \partial_{\xi}\right] \mathcal{F}_{3} E_{0}(J) \\
& =-\frac{1}{2} E_{0}(J) \mathcal{F}_{3}^{-1} \int_{\mathbb{R}}^{\oplus} d \xi\left\{-2 F(\xi) \xi\left(\left(\alpha_{1} \Pi_{1}+\alpha_{2} \Pi_{2}+\beta m\right)^{2}+\xi^{2}\right)^{-1 / 2}\right\} \mathcal{F}_{3} E_{0}(J) \\
& =E_{0}(J) F\left(P_{3}\right) P_{3}\left|H_{0}\right|^{-1} E_{0}(J)
\end{aligned}
$$

With this choice we get for $\mathrm{J} \subset(0, \infty)$ bounded and \mathcal{F}_{3} the Fourier transform along x_{3} :

$$
\begin{aligned}
& E_{0}(J) \underbrace{i\left[H_{0}, A\right]}_{\text {matrix }} E_{0}(J) \\
& =E_{0}(J) \underbrace{i\left[\left|H_{0}\right|, A\right]}_{\text {scalar }} E_{0}(J) \\
& \left.=-\frac{1}{2} E_{0}(J) \mathcal{F}_{3}^{-1} \int_{\mathbb{R}}^{\oplus} d \xi\left[\left(\alpha_{1} \Pi_{1}+\alpha_{2} \Pi_{2}+\beta m\right)^{2}+\xi^{2}\right)^{1 / 2}, \partial_{\xi} F(\xi)+F(\xi) \partial_{\xi}\right] \mathcal{F}_{3} E_{0}(J) \\
& =-\frac{1}{2} E_{0}(J) \mathcal{F}_{3}^{-1} \int_{\mathbb{R}}^{\oplus} d \xi\left\{-2 F(\xi) \xi\left(\left(\alpha_{1} \Pi_{1}+\alpha_{2} \Pi_{2}+\beta m\right)^{2}+\xi^{2}\right)^{-1 / 2}\right\} \mathcal{F}_{3} E_{0}(J) \\
& =E_{0}(J) F\left(P_{3}\right) P_{3}\left|H_{0}\right|^{-1} E_{0}(J)
\end{aligned}
$$

\Longrightarrow It is sufficient to prove the positivity of the bounded operator $\mathrm{F}\left(\mathrm{P}_{3}\right) \mathrm{P}_{3}\left|\mathrm{H}_{0}\right|^{-1}$ when localized on $\sigma\left(\mathrm{H}_{0}\right) \backslash \sigma_{\text {sym }}^{0}$.

Using \mathcal{F}_{3} and the formula

$$
\sigma\left[\mathrm{H}_{0}(\xi)^{2}\right]=\sigma\left[\mathrm{H}_{0}(0)^{2}+\xi^{2}\right]=\left(\sigma_{0}^{\text {sym }}\right)^{2}+\xi^{2},
$$

we deduce the Mourre estimate

$$
\begin{aligned}
\lim _{\varepsilon \searrow 0} \sup & \left\{a \in \mathbb{R} \mid E_{0}(\lambda ; \varepsilon) i\left[H_{0}, A\right] E_{0}(\lambda ; \varepsilon) \geq a E_{0}(\lambda ; \varepsilon)\right\} \\
& \geq \inf \left\{\left.\frac{F\left(\sqrt{\lambda^{2}-\mu^{2}}\right) \sqrt{\lambda^{2}-\mu^{2}}}{\lambda} \right\rvert\, \mu \in \sigma_{\text {sym }}^{0} \cap[0, \lambda]\right\}
\end{aligned}
$$

where $\mathrm{E}_{0}(\lambda ; \varepsilon):=\mathrm{E}_{0}((\lambda-\varepsilon, \lambda+\varepsilon))$.

Using \mathcal{F}_{3} and the formula

$$
\sigma\left[\mathrm{H}_{0}(\xi)^{2}\right]=\sigma\left[\mathrm{H}_{0}(0)^{2}+\xi^{2}\right]=\left(\sigma_{0}^{\text {sym }}\right)^{2}+\xi^{2},
$$

we deduce the Mourre estimate

$$
\begin{aligned}
\lim _{\varepsilon>0} \sup & \left\{a \in \mathbb{R} \mid E_{0}(\lambda ; \varepsilon) i\left[H_{0}, A\right] E_{0}(\lambda ; \varepsilon) \geq a E_{0}(\lambda ; \varepsilon)\right\} \\
& \geq \inf \left\{\left.\frac{F\left(\sqrt{\lambda^{2}-\mu^{2}}\right) \sqrt{\lambda^{2}-\mu^{2}}}{\lambda} \right\rvert\, \mu \in \sigma_{\text {sym }}^{0} \cap[0, \lambda]\right\},
\end{aligned}
$$

where $\mathrm{E}_{0}(\lambda ; \varepsilon):=\mathrm{E}_{0}((\lambda-\varepsilon, \lambda+\varepsilon))$.

The right-hand side is strictly positive for all $\lambda \in(0, \infty) \backslash \sigma_{\text {sym }}^{0}$.

7 Some references

- A. Boutet de Monvel and R. Purice. A distinguished self-adjoint extension for the Dirac operator with strong local singularities and arbitrary behaviour at infinity. Rep. Math. Phys., 1994.
- V. Georgescu and M. Măntoiu. On the spectral theory of singular Dirac type hamiltonians. J. Operator Theory, 2001.
- S. Richard and R. Tiedra de Aldecoa. On the spectrum of magnetic Dirac operators with Coulomb-type perturbations. J. Funct. Anal., 2007.

Thank you for your attention!

