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Starting observation

If Ho(g,p) = |p|?/2 is the kinetic energy on R?"™ and ®,(q,p) = ¢’

are the position observables, then

{{®;,Ho},Ho} = 0.
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Starting observation

If Ho(g,p) = |p|?/2 is the kinetic energy on R?"™ and ®,(q,p) = ¢’

are the position observables, then
{{®;,Ho}, Ho} = 0.

Thus,

e the time evolution of $, under the flow ¢} of Hy is lineal with
growth rate {®;, Hp} = p;

e trajectories {¢?(q,p)}+cr With p # 0 escape from the balls
B,:={qeR"||g|<r}as|t| = o

o if H € C*°(R?"™) is a suitable perturbation of Hy, the perturbed

trajectories corresponding to {¢?(q, p)}tcr also escape from B,
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e the difference of sojourn times in B, between the two trajectories
may converge to a finite value (called the global time delay for

(g,p)) as r — o©
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e the difference of sojourn times in B, between the two trajectories
may converge to a finite value (called the global time delay for

(g,p)) as r — o©

What happens when Hy and H are abstract Hamiltonians
on a symplectic manifold M 7
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Free Hamiltonian and position observables

(M,w) is a symplectic manifold. For f,g € C*°(M), we define the
Hamiltonian vector field X and the Poisson bracket {f, g} by

df(:) ==w(Xy, ) and {f, g} :=w(Xf, X,).
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Free Hamiltonian and position observables

(M,w) is a symplectic manifold. For f,g € C*°(M), we define the
Hamiltonian vector field X and the Poisson bracket {f, g} by

df(:) ==w(Xy, ) and {f, g} :=w(Xf, X,).

Hy € C*°(M) is an Hamiltonian with complete flow {pf}icr and

corresponding Hamiltonian evolution equation:

d
—fogl ={f Ho}oyl, teR
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We consider a family of observables ® = (&4,...,%,) € C®°(M;R%)
with

aj.Ho = {@], Ho} and VHO = (81H0, c ey adHo).
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We consider a family of observables ® = (&4,...,%,) € C®°(M;R%)
with

aj.Ho = {@], Ho} and VHO = (81H0, c ey adHo).

The set of critical points
Crit(Ho, ®) := (VHp) '({0}) Cc M
is closed and contains the set Crit(Hy) of critical points of Hp:

Crit(Ho, ®) D Crit(Ho) = {m € M | Xp,(m) = 0}.
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Assumption 1.1 (Position observables). For each 3 =1,2,...,d,
we assume that {{®;, Ho},Ho} = 0.
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Assumption 1.1 (Position observables). For each 3 =1,2,...,d,
we assume that {{®;, Ho},Ho} = 0.

Thus, we have for t € R and m € M that

(85 0 ¢7)(m) = &;(m) +t{®;, Ho}(m) + %{{cbj, Ho}, Ho}(m) + - -

— &,(m) + (8, Ho) (m),

and each orbit {¢?(m)}:cr stays in Crit(Hg, ®) if m € Crit(Hy, ®),
or stays outside Crit(Hp, ®) and is not periodic if m ¢ Crit(Hg, ®).
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Example 1.2 (Hy(q,p) = h(p)). M := T*R™ ~ R*",
W= Z?:l dg’ Adp;, Ho(g,p) := h(p) with h € C*°(R™;R), and
®;(g,p) = ¢
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Example 1.2 (Hy(q,p) = h(p)). M := T*R™ ~ R*",
W= Z?:l dg’ Adp;, Ho(g,p) := h(p) with h € C*°(R™;R), and
®;(g,p) = ¢

Then, ¢{(q,p) = (¢ +t(Vh)(p),p), VHo = Vh, and

{{®;, Ho}, Ho} = {(8;h)(p), h(p)} = 0.

Furthermore, Crit(Hy) = Crit(Hp, ®) = R™ x (Vh)~1({0}).
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Example 1.3 (Poincaré ball). Let B; := {g € R" | |q| < 1} with

4
(1—1q/?)

QQ(X(]’YQ) = 2 (Xq ) Yq)7 Xq:Yq S Tq-él =~ Rn)

e 1 <~ 1 2
Ho:T*B1 =R, (g,p)— = > ¢"a)pipr = Z[p*(1—lg*)".
2 oo 8
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Example 1.3 (Poincaré ball). Let B; := {g € R" | |q| < 1} with

4

e o) = g

5 (Xq-Yy), XgYg€ Tqél ~ R",

e 1 <~ 1 2
Ho:T*B1 =R, (g,p)— = > ¢"a)pipr = Z[p*(1—lg*)".
2 as 8

Hy has complete flow on M :=T*B; \ Hy '({0}) ~ B; x R*\ {0},

$:M—R, (g,p)— tanh™" (\piﬁ (\Jq)\z)) |

satisfies Assumption 1.1 with VHq = +/2Hy, and
Crit(Hyg) = Crit(Hp, ®?) = @.



®(q,p) s the signed geodesic distance between q and the closest

point to 0 € By on the geodesic curve generated by (g,p).
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Wave maps and scattering map

Assumption 1.4 (Potential). H € C*°(M) has complete flow
{pi}tcr and V := H — Hy s of bounded support in ®
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exists Ry > 0 such that |®(m)| < Ry for all m € supp(V)).
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Wave maps and scattering map

Assumption 1.4 (Potential). H € C*°(M) has complete flow
{p:}tcr and V := H — Hy s of bounded support in & (there
exists Ry > 0 such that |®(m)| < Ry for all m € supp(V)).

The sets of ®-bounded trajectories are

Bz :={m € M | 3R > 0 such that |®(p.¢(m))| < R for all ¢t > 0}.
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Wave maps and scattering map

Assumption 1.4 (Potential). H € C*°(M) has complete flow
{p:}tcr and V := H — Hy s of bounded support in & (there
exists Ry > 0 such that |®(m)| < Ry for all m € supp(V)).

The sets of ®-bounded trajectories are

Bz :={m € M | 3R > 0 such that |®(p.¢(m))| < R for all ¢t > 0}.

Theorem 1.5 (Existence of wave maps). Let Ho, H satisfy

Assumptions 1.1 and 1.4. Then, the wave maps

Wi = 11m ©_t 0 Q3
— 300

exist and are symplectomorphisms from M \ Crit(Hp, ®) to
M\ B:.
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Lemma 1.6 (Completeness of wave maps). Let Ho, H satisfy
Assumptions 1.1 and 1.4, plus some technical condition.
Assume there exists § > 0 such that {®-VHy, H}(m) > § for all
m e M. Then, BEIE = & and the wave maps

Wi : M\ Crit(Ho,®) > M
and the scattering map
S =W 'oW_: M\ Crit(Hy, ®) — M\ Crit(Ho, )

are well defined symplectomorphisms.
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Lemma 1.6 (Completeness of wave maps). Let Ho, H satisfy

Assumptions 1.1 and 1.4, plus some technical condition.
Assume there exists § > 0 such that {®-VHy, H}(m) > § for all
m e M. Then, BEIE = & and the wave maps

Wi : M\ Crit(Ho,®) > M
and the scattering map
S =W 'oW_: M\ Crit(Hy, ®) — M\ Crit(Ho, )
are well defined symplectomorphisms.

e The assumption {CID -V Hy, H } > 0 1s a virial-type condition

coming from the requirement % (|®]% 0 t) > 6.
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Lemma 1.6 (Completeness of wave maps). Let Ho, H satisfy

Assumptions 1.1 and 1.4, plus some technical condition.
Assume there exists § > 0 such that {®-VHy, H}(m) > § for all
m e M. Then, BEIE = & and the wave maps

Wi : M\ Crit(Ho,®) > M
and the scattering map
S =W 'oW_: M\ Crit(Hy, ®) — M\ Crit(Ho, )

are well defined symplectomorphisms.

e The assumption {CID -V Hy, H } > 0 1s a virial-type condition

coming from the requirement % (|®]% 0 t) > 6.

e The assumption {c1> -V Hy, H } > 0 can be made local (no need
for V' to be globally “repulsive”).
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Figure 1: Wave maps Wi and scattering map S
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Time delay in classical scattering theory

Suppose for a moment that:

Assumption 1.7 (Wave maps).
(1) Wi =limy 400 @_t 0 @} exist on some open sets Dy C M.
(1) Wy are invertible, with W' : Ran(W4) — D4

(112) Wi have common ranges Ran(W,) = Ran(W_).
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Time delay in classical scattering theory

Suppose for a moment that:

Assumption 1.7 (Wave maps).
(1) Wi =limy 400 @_t 0 @} exist on some open sets Dy C M.
(1) Wy are invertible, with W' : Ran(W4) — D4

(112) Wi have common ranges Ran(W,) = Ran(W_).

(we have seen conditions guaranteeing this)
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o X%, characteristic function for the set ®~1(B,).
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o X%, characteristic function for the set ®~1(B,).

e Sojourn time in ®!(B,) for the free trajectory starting from
m_c€D_att=0:

T(m-) = [ dt (xF o 9f)(m-).
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o X%, characteristic function for the set ®~1(B,).

e Sojourn time in ®!(B,) for the free trajectory starting from
m_c€D_att=0:

T(m-) = [ dt (xF o 9f)(m-).

e Corresponding sojourn time for the perturbed trajectory

starting from W_(m_) at time ¢t = 0:

Tr(m_) ::/%dt (XfocptoW_)(m_).
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o X%, characteristic function for the set ®~1(B,).

e Sojourn time in ®!(B,) for the free trajectory starting from
m_c€D_att=0:

T(m-) = [ dt (xF o 9f)(m-).

e Corresponding sojourn time for the perturbed trajectory

starting from W_(m_) at time ¢t = 0:
Tr(m_) = / dit (Xf O (g O W_)(m_).
R

e Time delay in ¢~ 1(B,) for the scattering system (Hy, H) with

starting point m_:

r(m_) = Th(m_) — %{T,,?(m_) (T §)(m_)}.
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Theorem 1.8 (Time delay). Let Hy and H satisfy Assumptions
1.1 and 1.7, and let m_ € D_ \ Crit(Ho, ®) satisfy

S(m_) & Crit(Hg, ®), plus some technical condition. Then,
lim 7,(m_)=T(m_)— (T o S)(m_)

r—00

with T : M \ Crit(Hp, ®) — R the C*°-function given by

V Hy

T :=&. :
|V Hp|?
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Theorem 1.8 (Time delay). Let Hy and H satisfy Assumptions
1.1 and 1.7, and let m_ € D_ \ Crit(Ho, ®) satisfy

S(m_) & Crit(Hg, ®), plus some technical condition. Then,
lim 7,(m_)=T(m_)— (T o S)(m_)

r—00

with T : M \ Crit(Hp, ®) — R the C*°-function given by

V Hy

T :=&. :
|V Hp|?

(=T'(m) is the (arrival) time at which a particle in R* with initial
position ®(m) and velocity (VHp)(m) intersects the hyperplane

: (VHop)(m)
orthogonal to the unit vector (VE)(m)] )
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Some comments:
e Set T7(m_) :=lim,_,o 7-(m_). Since

Top =T+t and ¢{oS =S50,
one has

(Tog?)(m_)={(T-ToS)op}(m_)=1(m_),

meaning that 7 is a first integral of the free motion.
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Some comments:
e Set T7(m_) :=lim,_,o 7-(m_). Since
Top =T+t and ¢{oS =S50,
one has
(To))(m_)={(T —To8)op}(m_)=1(m_),

meaning that 7 is a first integral of the free motion.

e The formula of the theorem should be compared to the

BEisenbud-Wigner formula of quantum mechanics:

lim 7.(¢) = (o, To)n — (S, TSY)s = — (@, S*[T, Slp)n

r— 00
dS
— g 35y
<90 Z dHO(p H
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o If
((VHo)(m_)|* = |(VHo 0 §)(m_)|%,

then one can replace in the theorem the symmetrized time delay

T.(m_) by the unsymmetrized time delay

rR(m_) == To(m_) — T(m._).
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Example 1.9 (Ho(q,p) = h(p), continued). Let
H(q,p) == h(p) +V(q) with V € C*(R™;R). Under some

conditions on h, one can find an open subset U C R*™ on which

all the assumptions are satisfied.
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Example 1.9 (Ho(q,p) = h(p), continued). Let
H(q,p) == h(p) +V(q) with V € C*(R™;R). Under some
conditions on h, one can find an open subset U C R*™ on which

all the assumptions are satisfied.

So, the theorem on time delay applies, and one has for
(g-,p7) €U
lim 7.(¢-,p7) =T(g-,p") — T(q+,p")

_ g (Vh)(P") g+ - (VA)(p")
(VR (VA (PF)I?

with (g+,p") := S(g-,p7).
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Example 1.10 (Poincaré ball, continued). Let
H(q,p) := Ho(q,p) + V(q) with V € C®(B;R). One can find an

open subset U C M on which all the assumptions are satisfied.
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Example 1.10 (Poincaré ball, continued). Let
H(q,p) := Ho(q,p) + V(q) with V € C®(B;R). One can find an

open subset U C M on which all the assumptions are satisfied.

So, the theorem on time delay applies, and one has for
(g-,p7) €U

= lim 7.(g_,p7) =T(g_,p") — T(g+,p")

r—00

—1( 20 q-) \ _ —1( 2(p"-qq) )}
z{tanh (|p—|(1+|q_|2)) tanh (|p+|(1+|q+|2)

P~ |(1 —|g—|?) ’

with (q1,p") = S(g—,p7).
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Calabi invariant of the Poincaré scattering map

Let (M',w') be an exact 2n'-dimensional symplectic manifold with
w' = doa for some 1-form a. Let 9 be a symplectomorphism of M’

with compact support such that
a—¢Y*a=df forsome f e C(M).

(hamiltomorphisms satisfy this; f is a a-generating function of 1)
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Calabi invariant of the Poincaré scattering map

Let (M',w') be an exact 2n'-dimensional symplectic manifold with
w' = doa for some 1-form a. Let 9 be a symplectomorphism of M’

with compact support such that
a—¢Y*a=df forsome f e C(M).

(hamiltomorphisms satisfy this; f is a a-generating function of 1)

The Calabi invariant of v is

1 w'™ (m)

nl—l—]. M!

Cal(y) :=



20-b/26
Calabi invariant of the Poincaré scattering map

Let (M',w') be an exact 2n'-dimensional symplectic manifold with
w' = doa for some 1-form a. Let 9 be a symplectomorphism of M’

with compact support such that
a—¢Y*a=df forsome f e C(M).

(hamiltomorphisms satisfy this; f is a a-generating function of 1)

The Calabi invariant of v is

/

1 n
/ (m) Y (m)
n' + 1 M!

Cal(y) := e R.

n'!

e Cal(%) is independent of the choice of a,
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Calabi invariant of the Poincaré scattering map

Let (M',w') be an exact 2n'-dimensional symplectic manifold with
w' = doa for some 1-form a. Let 9 be a symplectomorphism of M’

with compact support such that
a—¢Y*a=df forsome f e C(M).

(hamiltomorphisms satisfy this; f is a a-generating function of 1)

The Calabi invariant of v is

/

1 w'™ (m)

Cal(y) :=

n'!

e Cal(%) is independent of the choice of a,

o the restriction Ca~1|{hamil1:omorphisms with compact support} 1s a
homomorphism (see e.g. [McDuff/Salamon 98]).
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Assume that M is exact with dim(M) > 4. Suppose that
e Assumption 1.1 holds,
e V has compact support (plus some technical condition),

e U C R is an open set such that
(i) Hy '(U) N Crit(Hy, ®) = 2,
(ii) there exists § > 0 such that {& - VHy, H}(m) > § for all
m € Hy ' (U).
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Assume that M is exact with dim(M) > 4. Suppose that
e Assumption 1.1 holds,
e V has compact support (plus some technical condition),

e U C R is an open set such that
(i) Hy '(U) N Crit(Hy, ®) = 2,
(ii) there exists § > 0 such that {& - VHy, H}(m) > § for all
m € Hy ' (U).

Then

e The maps
Wy :Hy'(U) - HY(U) and S:H;'(U)— Hy ' (U)

are well defined symplectomorphisms.
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e For each E € U, % := H; "({E}) is regular submanifold of M

and
I'g ={mexy|(® VHo)(m)=0}.

is (in %) a local transversal section of the vector field X, |50
(see |[Abraham/Marsden 78]).
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e For each E € U, £% := H; '({E}) is regular submanifold of M
and
I'g ={mexy|(® VHo)(m)=0}.

is (in %) a local transversal section of the vector field X, |50
(see |[Abraham/Marsden 78]).

e The orbit space 3% := ©% /R, i.e. the quotient of ¥% by the

group action
pOF R x T = B, (t,m) = " (m),

is a symplectic manifold of dimension 2(n — 1).
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e For each E € U, £% := H; '({E}) is regular submanifold of M

and
I'g ={mexy|(® VHo)(m)=0}.

is (in %) a local transversal section of the vector field X, |50
(see |[Abraham/Marsden 78]).

e The orbit space 3% := ©% /R, i.e. the quotient of ¥% by the

group action
" 1R x B — g, (t,m) = 9" (m),
is a symplectic manifold of dimension 2(n — 1).

o The restricted scattering map Sg := S ‘2% induces a

symplectomorphism Sg on f}% (called the Poincaré scattering

map) with compact support.
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Using a theorem of [Buslaev/Pushnitskil0] giving the expression of
it Cal(Sg) in terms of integrals over transversal sections, we

obtain:
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Using a theorem of [Buslaev/Pushnitskil0] giving the expression of
it Cal(Sg) in terms of integrals over transversal sections, we

obtain:

Theorem 1.11 (Calabi invariant). Under the preceding

assumptions, one has

d ~ , w™1(m)
EC&I(SE) = —/F lim 7.(m) (n—1)!

77— 00
B

_ / (®0S)(m)-(VHooS)(m) w *(m)
s [(VHp 0 §)(m)|? (n—1)!"
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Example 1.12 (Hy(q,p) = h(p), the end). If the dimension of
M ~R?" 4s >4 and V has compact support, then all the

assumptions are verified for an open set U C R.
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Example 1.12 (Hy(q,p) = h(p), the end). If the dimension of
M ~R?" 4s >4 and V has compact support, then all the

assumptions are verified for an open set U C R.

So, the theorem on the Calabt invariant applies, and one has
for each E € U

d 0\ _ gy - (Vh)(p") w™ *(q,p)
_Cal(SE — YD -,
df {(g,p)ER?™|h(p)=E, q-(Vh)(p)=0} [(VR)(pT)] (n—1)!

with (g4,p") := S(g,p).
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Example 1.12 (Hy(q,p) = h(p), the end). If the dimension of
M ~R?" 4s >4 and V has compact support, then all the

assumptions are verified for an open set U C R.

So, the theorem on the Calabt invariant applies, and one has
for each E € U

d 0\ _ gy - (Vh)(p") w™ *(q,p)
— Cal SE = T -,
df {(g,p)ER?™|h(p)=E, q-(Vh)(p)=0} [(VR)(pT)] (n—1)!

with (g4,p") := S(g,p).
In the case h(p) = |p|?/2, one obtains

d ~ ~ n—
7 Cal(8g) = (2B)" /2 / d"'p / d"*q (¢+ - p"),
§n—1 qp:O

with p:= p/|p| and d"~'p the spherical measure on S* 1.
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Example 1.13 (Poincaré ball, the end). If the dimension of
M ~ B; x R" \ {0} 2s >4 and V has compact support, then all

the assumptions are verified for an open set U C R.
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Example 1.13 (Poincaré ball, the end). If the dimension of
M ~ B; x R" \ {0} 2s >4 and V has compact support, then all

the assumptions are verified for an open set U C R.

So, the theorem on the Calabt invariant applies, and one has
for each E € U

d ~
7 Cal(5x)

w™ (g, p)

(n—1)!"°

— @By 3(q,,p")
{(g,p)€B1 xR™\{0}||p|?(1—|q|?)2=8E, p-qg=0}

with $(g,p) = tanh™" <|p|?§iﬁz)|z)> and (q+,p") = S(g,p).
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