Time delay and Calabi invariant in classical scattering theory

Rafael Tiedra (Catholic University of Chile)

Penn State, January 2013

Joint work with: Antoine Gournay (University of Neuchâtel)

If $H_0(q,p) = |p|^2/2$ is the kinetic energy on \mathbb{R}^{2n} and $\Phi_j(q,p) = q^j$ are the position observables, then

$$\{\{\Phi_j, H_0\}, H_0\} = 0.$$

If $H_0(q,p) = |p|^2/2$ is the kinetic energy on \mathbb{R}^{2n} and $\Phi_j(q,p) = q^j$ are the position observables, then

$$\{\{\Phi_j, H_0\}, H_0\} = 0.$$

Thus,

• the time evolution of Φ_j under the flow φ_t^0 of H_0 is lineal with growth rate $\{\Phi_j, H_0\} = p_j$

If $H_0(q,p) = |p|^2/2$ is the kinetic energy on \mathbb{R}^{2n} and $\Phi_j(q,p) = q^j$ are the position observables, then

$$\{\{\Phi_j, H_0\}, H_0\} = 0.$$

Thus,

- the time evolution of Φ_j under the flow φ_t^0 of H_0 is lineal with growth rate $\{\Phi_j, H_0\} = p_j$
- trajectories $\{ arphi_t^0(q,p) \}_{t \in \mathbb{R}}$ with $p \neq 0$ escape from the balls $B_r := \left\{ q \in \mathbb{R}^n \mid |q| \leq r
 ight\}$ as $|t| o \infty$

If $H_0(q,p) = |p|^2/2$ is the kinetic energy on \mathbb{R}^{2n} and $\Phi_j(q,p) = q^j$ are the position observables, then

$$\{\{\Phi_j, H_0\}, H_0\} = 0.$$

Thus,

- the time evolution of Φ_j under the flow φ_t^0 of H_0 is lineal with growth rate $\{\Phi_j, H_0\} = p_j$
- trajectories $\{arphi_t^0(q,p)\}_{t\in\mathbb{R}}$ with p
 eq 0 escape from the balls $B_r:=ig\{q\in\mathbb{R}^n\mid |q|\leq rig\}$ as $|t| o\infty$

• if $H \in C^{\infty}(\mathbb{R}^{2n})$ is a suitable perturbation of H_0 , the perturbed trajectories corresponding to $\{\varphi_t^0(q,p)\}_{t\in\mathbb{R}}$ also escape from B_r

• the difference of sojourn times in B_r between the two trajectories may converge to a finite value (called the global time delay for (q,p)) as $r \to \infty$ • the difference of sojourn times in B_r between the two trajectories may converge to a finite value (called the global time delay for (q,p)) as $r \to \infty$

What happens when H_0 and H are abstract Hamiltonians on a symplectic manifold M ?

Free Hamiltonian and position observables

 (M, ω) is a symplectic manifold. For $f, g \in C^{\infty}(M)$, we define the Hamiltonian vector field X_f and the Poisson bracket $\{f, g\}$ by

 $\mathrm{d} f(\,\cdot\,):=\omega(X_f,\,\cdot\,)\quad ext{and}\quad \{f,g\}:=\omega(X_f,X_g).$

Free Hamiltonian and position observables

 (M, ω) is a symplectic manifold. For $f, g \in C^{\infty}(M)$, we define the Hamiltonian vector field X_f and the Poisson bracket $\{f, g\}$ by

$$\mathrm{d} f(\,\cdot\,):=\omega(X_f,\,\cdot\,) \quad ext{and} \quad \{f,g\}:=\omega(X_f,X_g).$$

 $H_0 \in C^{\infty}(M)$ is an Hamiltonian with complete flow $\{\varphi_t^0\}_{t \in \mathbb{R}}$ and corresponding Hamiltonian evolution equation:

$$rac{\mathrm{d}}{\mathrm{d}t}f\circarphi_t^{\mathsf{0}}=\{f,H_{\mathsf{0}}\}\circarphi_t^{\mathsf{0}},\quad t\in\mathbb{R}.$$

5/26

We consider a family of observables $\Phi \equiv (\Phi_1, \dots, \Phi_d) \in C^\infty(M; \mathbb{R}^d)$ with

 $\partial_j H_0 := \{\Phi_j, H_0\}$ and $\nabla H_0 := (\partial_1 H_0, \dots, \partial_d H_0).$

5-a/26

We consider a family of observables $\Phi \equiv (\Phi_1, \dots, \Phi_d) \in C^\infty(M; \mathbb{R}^d)$ with

$$\partial_j H_0 := \{\Phi_j, H_0\}$$
 and $\nabla H_0 := (\partial_1 H_0, \dots, \partial_d H_0).$

The set of critical points

$$\operatorname{Crit}(H_0,\Phi) := (\nabla H_0)^{-1}(\{0\}) \subset M$$

is closed and contains the set $Crit(H_0)$ of critical points of H_0 :

$$\operatorname{Crit}(H_0,\Phi) \supset \operatorname{Crit}(H_0) \equiv \big\{ m \in M \mid X_{H_0}(m) = 0 \big\}.$$

Assumption 1.1 (Position observables). For each j = 1, 2, ..., d, we assume that $\{\{\Phi_j, H_0\}, H_0\} = 0$. Assumption 1.1 (Position observables). For each j = 1, 2, ..., d, we assume that $\{\{\Phi_j, H_0\}, H_0\} = 0$.

Thus, we have for $t \in \mathbb{R}$ and $m \in M$ that

$$ig(\Phi_j \circ arphi_t^0 ig)(m) = \Phi_j(m) + t \{ \Phi_j, H_0 \}(m) + rac{t^2}{2} ig\{ \{ \Phi_j, H_0 \}, H_0 ig\}(m) + \cdots \ = \Phi_j(m) + t ig(\partial_j H_0 ig)(m),$$

and each orbit $\{\varphi_t^0(m)\}_{t\in\mathbb{R}}$ stays in $\operatorname{Crit}(H_0, \Phi)$ if $m \in \operatorname{Crit}(H_0, \Phi)$, or stays outside $\operatorname{Crit}(H_0, \Phi)$ and is not periodic if $m \notin \operatorname{Crit}(H_0, \Phi)$. $\begin{array}{l} \mathbf{Example \ 1.2} \ (H_0(q,p)=h(p)). \ M:=T^*\mathbb{R}^n\simeq\mathbb{R}^{2n},\\ \omega:=\sum_{j=1}^n\mathrm{d} q^j\wedge\mathrm{d} p_j, \ H_0(q,p):=h(p) \ with \ h\in C^\infty(\mathbb{R}^n;\mathbb{R}), \ and\\ \Phi_j(q,p):=q^j.\end{array}$

7-a/26

 $egin{aligned} \mathbf{Example 1.2} & (H_0(q,p)=h(p)). \ M:=T^*\mathbb{R}^n\simeq\mathbb{R}^{2n}, \ \omega:=\sum_{j=1}^n\mathrm{d} q^j\wedge\mathrm{d} p_j, \ H_0(q,p):=h(p) \ with \ h\in C^\infty(\mathbb{R}^n;\mathbb{R}), \ and \ \Phi_j(q,p):=q^j. \end{aligned}$

Then,
$$\varphi_t^0(q,p) = (q+t(
abla h)(p),p), \
abla H_0 =
abla h, and $ig\{ \{\Phi_j, H_0\}, H_0\} = ig\{ (\partial_j h)(p), h(p) \} = 0.$$$

Furthermore, $\operatorname{Crit}(H_0) = \operatorname{Crit}(H_0, \Phi) = \mathbb{R}^n \times (\nabla h)^{-1}(\{0\}).$

8/26

Example 1.3 (Poincaré ball). Let $\mathring{B}_1 := \left\{ q \in \mathbb{R}^n \mid |q| < 1 \right\}$ with

$$g_q(X_q,Y_q):=rac{4}{(1-|q|^2)^2}(X_q\cdot Y_q), \quad X_q,Y_q\in T_q \mathring{B}_1\simeq \mathbb{R}^n,$$

$$H_0: T^* \mathring{B}_1 o \mathbb{R}, \quad (q,p) \mapsto rac{1}{2} \sum_{j,k=1}^n g^{jk}(q) \, p_j \, p_k = rac{1}{8} \, |p|^2 ig(1-|q|^2ig)^2.$$

8-a/26

Example 1.3 (Poincaré ball). Let $\mathring{B}_1 := \left\{ q \in \mathbb{R}^n \mid |q| < 1 \right\}$ with

$$g_q(X_q,Y_q):=rac{4}{(1-|q|^2)^2}\,(X_q\cdot Y_q),\quad X_q,Y_q\in T_q \mathring{B}_1\simeq \mathbb{R}^n,$$

$$H_0: T^* \mathring{B}_1 \to \mathbb{R}, \quad (q,p) \mapsto rac{1}{2} \sum_{j,k=1}^n g^{jk}(q) \, p_j \, p_k = rac{1}{8} \, |p|^2 ig(1-|q|^2ig)^2.$$

 H_0 has complete flow on $M:=T^*\mathring{B}_1\setminus H_0^{-1}(\{0\})\simeq \mathring{B}_1 imes \mathbb{R}^n\setminus\{0\},$

$$\Phi: M o \mathbb{R}, \quad (q,p) \mapsto anh^{-1}\left(rac{2(p \cdot q)}{|p|(1+|q|^2)}
ight),$$

satisfies Assumption 1.1 with $\nabla H_0 = \sqrt{2H_0}$, and $Crit(H_0) = Crit(H_0, \Phi) = \varnothing$.

 $\Phi(q,p)$ is the signed geodesic distance between q and the closest point to $0 \in \mathring{B}_1$ on the geodesic curve generated by (q,p).

Assumption 1.4 (Potential). $H \in C^{\infty}(M)$ has complete flow $\{\varphi_t\}_{t \in \mathbb{R}}$ and $V := H - H_0$ is of bounded support in Φ

Assumption 1.4 (Potential). $H \in C^{\infty}(M)$ has complete flow $\{\varphi_t\}_{t\in\mathbb{R}}$ and $V := H - H_0$ is of bounded support in Φ (there exists $R_V \ge 0$ such that $|\Phi(m)| \le R_V$ for all $m \in \operatorname{supp}(V)$).

Assumption 1.4 (Potential). $H \in C^{\infty}(M)$ has complete flow $\{\varphi_t\}_{t\in\mathbb{R}}$ and $V := H - H_0$ is of bounded support in Φ (there exists $R_V \ge 0$ such that $|\Phi(m)| \le R_V$ for all $m \in \operatorname{supp}(V)$).

The sets of Φ -bounded trajectories are

 $B^\pm_\Phi:=ig\{m\in M\mid \exists\,R\geq 0 ext{ such that } ig|\Phiig(arphi_{\pm t}(m)ig)ig|\leq R ext{ for all } t\geq 0ig\}.$

Assumption 1.4 (Potential). $H \in C^{\infty}(M)$ has complete flow $\{\varphi_t\}_{t\in\mathbb{R}}$ and $V := H - H_0$ is of bounded support in Φ (there exists $R_V \ge 0$ such that $|\Phi(m)| \le R_V$ for all $m \in \operatorname{supp}(V)$).

The sets of Φ -bounded trajectories are

 $B^\pm_\Phi:=ig\{m\in M\mid \exists\,R\geq 0 ext{ such that } ig|\Phiig(arphi_{\pm t}(m)ig)ig|\leq R ext{ for all } t\geq 0ig\}.$

Theorem 1.5 (Existence of wave maps). Let H_0 , H satisfy Assumptions 1.1 and 1.4. Then, the wave maps

$$W_\pm := \lim_{t o\pm\infty} arphi_{-t} \circ arphi_t^0$$

exist and are symplectomorphisms from $M \setminus Crit(H_0, \Phi)$ to $M \setminus B_{\Phi}^{\pm}$.

11/26

Lemma 1.6 (Completeness of wave maps). Let H_0 , H satisfy Assumptions 1.1 and 1.4, plus some technical condition. Assume there exists $\delta > 0$ such that $\{\Phi \cdot \nabla H_0, H\}(m) > \delta$ for all $m \in M$. Then, $B_{\Phi}^{\pm} = \emptyset$ and the wave maps

$$W_\pm: M \setminus {\mathsf{Crit}}(H_0,\Phi) o M$$

and the scattering map

 $S:=W_+^{-1}\circ W_-:M\setminus {
m Crit}(H_0,\Phi) o M\setminus {
m Crit}(H_0,\Phi)$

are well defined symplectomorphisms.

11-a/26

Lemma 1.6 (Completeness of wave maps). Let H_0 , H satisfy Assumptions 1.1 and 1.4, plus some technical condition. Assume there exists $\delta > 0$ such that $\{\Phi \cdot \nabla H_0, H\}(m) > \delta$ for all $m \in M$. Then, $B_{\Phi}^{\pm} = \emptyset$ and the wave maps

$$W_\pm: M \setminus {\mathsf{Crit}}(H_0,\Phi) o M$$

and the scattering map

$$S:=W_+^{-1}\circ W_-:M\setminus {\sf Crit}(H_0,\Phi) o M\setminus {\sf Crit}(H_0,\Phi)$$

are well defined symplectomorphisms.

• The assumption $\{\Phi \cdot \nabla H_0, H\} > \delta$ is a virial-type condition coming from the requirement $\frac{d^2}{dt^2} (|\Phi|^2 \circ \varphi_t) > \delta$.

11-b/26

Lemma 1.6 (Completeness of wave maps). Let H_0 , H satisfy Assumptions 1.1 and 1.4, plus some technical condition. Assume there exists $\delta > 0$ such that $\{\Phi \cdot \nabla H_0, H\}(m) > \delta$ for all $m \in M$. Then, $B_{\Phi}^{\pm} = \emptyset$ and the wave maps

$$W_\pm: M \setminus {\mathsf{Crit}}(H_0, \Phi) o M$$

and the scattering map

$$S:=W_+^{-1}\circ W_-:M\setminus {\sf Crit}(H_0,\Phi) o M\setminus {\sf Crit}(H_0,\Phi)$$

are well defined symplectomorphisms.

• The assumption $\{\Phi \cdot \nabla H_0, H\} > \delta$ is a virial-type condition coming from the requirement $\frac{d^2}{dt^2} (|\Phi|^2 \circ \varphi_t) > \delta$.

• The assumption $\{\Phi \cdot \nabla H_0, H\} > \delta$ can be made local (no need for V to be globally "repulsive").

12/26

Figure 1: Wave maps W_\pm and scattering map S

Time delay in classical scattering theory

Suppose for a moment that:

Assumption 1.7 (Wave maps).

(i) W_± = lim_{t→±∞} φ_{-t} ∘ φ_t⁰ exist on some open sets D_± ⊂ M.
(ii) W_± are invertible, with W_±⁻¹ : Ran(W_±) → D_±.
(iii) W_± have common ranges Ran(W₊) = Ran(W₋).

Time delay in classical scattering theory

Suppose for a moment that:

Assumption 1.7 (Wave maps). (i) $W_{\pm} = \lim_{t \to \pm \infty} \varphi_{-t} \circ \varphi_t^0$ exist on some open sets $\mathcal{D}_{\pm} \subset M$. (ii) W_{\pm} are invertible, with W_{\pm}^{-1} : $\operatorname{Ran}(W_{\pm}) \to \mathcal{D}_{\pm}$. (iii) W_{\pm} have common ranges $\operatorname{Ran}(W_{+}) = \operatorname{Ran}(W_{-})$.

(we have seen conditions guaranteeing this)

• χ_r^{Φ} , characteristic function for the set $\Phi^{-1}(B_r)$.

- χ_r^{Φ} , characteristic function for the set $\Phi^{-1}(B_r)$.
- Sojourn time in $\Phi^{-1}(B_r)$ for the free trajectory starting from $m_- \in \mathcal{D}_-$ at t=0:

$$T^0_r(m_-):=\int_{\mathbb{R}}\mathrm{d}t\,ig(\chi^\Phi_r\circarphi^0_tig)(m_-).$$

• χ_r^{Φ} , characteristic function for the set $\Phi^{-1}(B_r)$.

• Sojourn time in $\Phi^{-1}(B_r)$ for the free trajectory starting from $m_- \in \mathcal{D}_-$ at t = 0:

$$T^0_r(m_-):=\int_{\mathbb{R}}\mathrm{d}t\,ig(\chi^\Phi_r\circarphi^0_tig)(m_-).$$

• Corresponding sojourn time for the perturbed trajectory starting from $W_{-}(m_{-})$ at time t = 0:

$$T_r(m_-):=\int_{\mathbb{R}} \mathrm{d}t\,ig(\chi^\Phi_r\circ arphi_t\circ W_-ig)(m_-).$$

• χ_r^{Φ} , characteristic function for the set $\Phi^{-1}(B_r)$.

• Sojourn time in $\Phi^{-1}(B_r)$ for the free trajectory starting from $m_- \in \mathcal{D}_-$ at t = 0:

$$T^0_r(m_-):=\int_{\mathbb{R}}\mathrm{d}t\,ig(\chi^\Phi_r\circarphi^0_tig)(m_-).$$

• Corresponding sojourn time for the perturbed trajectory starting from $W_{-}(m_{-})$ at time t = 0:

$$T_r(m_-):=\int_{\mathbb{R}}\mathrm{d}t\,ig(\chi^\Phi_r\circarphi_t\circ W_-ig)(m_-).$$

• Time delay in $\Phi^{-1}(B_r)$ for the scattering system (H_0, H) with starting point m_- :

$$au_r(m_-):=T_r(m_-)-rac{1}{2}ig\{T^0_r(m_-)+ig(T^0_r\circ Sig)(m_-)ig\}.$$

Theorem 1.8 (Time delay). Let H_0 and H satisfy Assumptions 1.1 and 1.7, and let $m_- \in \mathcal{D}_- \setminus \text{Crit}(H_0, \Phi)$ satisfy $S(m_-) \notin \text{Crit}(H_0, \Phi)$, plus some technical condition. Then,

$$\lim_{r o\infty} au_r(m_-)=T(m_-)-(T\circ S)(m_-)$$

with $T: M \setminus Crit(H_0, \Phi) \to \mathbb{R}$ the C^{∞} -function given by

$$T := \Phi \cdot rac{
abla H_0}{|
abla H_0|^2}.$$

15-a/26

Theorem 1.8 (Time delay). Let H_0 and H satisfy Assumptions 1.1 and 1.7, and let $m_- \in \mathcal{D}_- \setminus \text{Crit}(H_0, \Phi)$ satisfy $S(m_-) \notin \text{Crit}(H_0, \Phi)$, plus some technical condition. Then,

$$\lim_{r o\infty} au_r(m_-)=T(m_-)-(T\circ S)(m_-)$$

with $T: M \setminus Crit(H_0, \Phi) \rightarrow \mathbb{R}$ the C^{∞} -function given by

$$T := \Phi \cdot \frac{\nabla H_0}{|\nabla H_0|^2}.$$

 $(-T(m) \text{ is the (arrival) time at which a particle in } \mathbb{R}^d$ with initial position $\Phi(m)$ and velocity $(\nabla H_0)(m)$ intersects the hyperplane orthogonal to the unit vector $\frac{(\nabla H_0)(m)}{|(\nabla H_0)(m)|}$

16/26

Some comments:

• Set
$$au(m_-):=\lim_{r o\infty} au_r(m_-).$$
 Since $T\circ arphi_t^0=T+t \hspace{0.2cm} ext{and}\hspace{0.2cm} arphi_t^0\circ S=S\circ arphi_t^0,$

one has

$$ig(au\circ arphi_t^0ig)(m_-) = ig\{(T-T\circ S)\circ arphi_t^0ig\}(m_-) = au(m_-),$$

meaning that τ is a first integral of the free motion.

16-a/26

Some comments:

• Set
$$au(m_-):=\lim_{r o\infty} au_r(m_-).$$
 Since $T\circ arphi_t^0=T+t \hspace{0.2cm} ext{and}\hspace{0.2cm} arphi_t^0\circ S=S\circ arphi_t^0,$

one has

$$ig(au\circ arphi_t^0ig)(m_-)=ig\{(T-T\circ S)\circ arphi_t^0ig\}(m_-)= au(m_-),$$

meaning that τ is a first integral of the free motion.

• The formula of the theorem should be compared to the Eisenbud-Wigner formula of quantum mechanics:

$$egin{aligned} \lim_{r o\infty} au_r(arphi) &= \langlearphi,Tarphi
angle_{\mathcal{H}} - \langle Sarphi,TSarphi
angle_{\mathcal{H}} &= -\langlearphi,S^*[T,S]arphi
angle_{\mathcal{H}} \ &= -\Big\langlearphi,iS^*rac{{
m d}S}{{
m d}H_0}arphi\Big
angle_{\mathcal{H}} \end{aligned}$$

• If

$$|(
abla H_0)(m_-)|^2 = |(
abla H_0 \circ S)(m_-)|^2,$$

then one can replace in the theorem the symmetrized time delay $au_r(m_-)$ by the unsymmetrized time delay

$$au_r^{
m in}(m_-):=T_r(m_-)-T_r^0(m_-).$$

Example 1.9 $(H_0(q, p) = h(p), \text{ continued})$. Let H(q, p) := h(p) + V(q) with $V \in C_c^{\infty}(\mathbb{R}^n; \mathbb{R})$. Under some conditions on h, one can find an open subset $U \subset \mathbb{R}^{2n}$ on which all the assumptions are satisfied. **Example 1.9** $(H_0(q, p) = h(p), \text{ continued})$. Let H(q, p) := h(p) + V(q) with $V \in C_c^{\infty}(\mathbb{R}^n; \mathbb{R})$. Under some conditions on h, one can find an open subset $U \subset \mathbb{R}^{2n}$ on which all the assumptions are satisfied.

So, the theorem on time delay applies, and one has for $(q_-,p^-)\in U$

$$egin{aligned} \lim_{r o\infty} au_r(q_-,p^-) &= T(q_-,p^-) - T(q_+,p^+) \ &= rac{q_-\cdot (
abla h)(p^-)}{|(
abla h)(p^-)|^2} - rac{q_+\cdot (
abla h)(p^+)}{|(
abla h)(p^+)|^2}\,, \end{aligned}$$

 $with \; (q_+,p^+) := S(q_-,p^-).$

Example 1.10 (Poincaré ball, continued). Let $H(q, p) := H_0(q, p) + V(q)$ with $V \in C^{\infty}(\mathring{B}_1; \mathbb{R})$. One can find an open subset $U \subset M$ on which all the assumptions are satisfied. **Example 1.10** (Poincaré ball, continued). Let $H(q,p) := H_0(q,p) + V(q)$ with $V \in C^{\infty}(\mathring{B}_1; \mathbb{R})$. One can find an open subset $U \subset M$ on which all the assumptions are satisfied.

So, the theorem on time delay applies, and one has for $(q_-,p^-)\in U$

$$egin{aligned} &= \lim_{r o \infty} au_r(q_-,p^-) = T(q_-,p^-) - T(q_+,p^+) \ &dots \ &= rac{2\left\{ au nh^{-1}\left(rac{2(p^- \cdot q_-)}{|p^-|(1+|q_-|^2)}
ight) - au nh^{-1}\left(rac{2(p^+ \cdot q_+)}{|p^+|(1+|q_+|^2)}
ight)
ight\}}{|p^-|(1-|q_-|^2)}\,, \end{aligned}$$

with $(q_+, p^+) := S(q_-, p^-).$

Let (M', ω') be an exact 2n'-dimensional symplectic manifold with $\omega' = d\alpha$ for some 1-form α . Let ψ be a symplectomorphism of M' with compact support such that

 $lpha-\psi^*lpha={
m d} f$ for some $f\in C_0^\infty(M').$

(hamiltomorphisms satisfy this; f is a α -generating function of ψ)

Let (M', ω') be an exact 2n'-dimensional symplectic manifold with $\omega' = d\alpha$ for some 1-form α . Let ψ be a symplectomorphism of M' with compact support such that

$$lpha-\psi^*lpha={
m d} f\quad {
m for \ some}\ f\in C_0^\infty(M').$$

(hamiltomorphisms satisfy this; f is a α -generating function of ψ)

The Calabi invariant of ψ is

$$\operatorname{Cal}(\psi):=rac{1}{n'+1}\int_{M'}f(m)rac{{w'}^{\,n'}(m)}{n'!}\in\mathbb{R}.$$

Let (M', ω') be an exact 2n'-dimensional symplectic manifold with $\omega' = d\alpha$ for some 1-form α . Let ψ be a symplectomorphism of M' with compact support such that

$$lpha-\psi^*lpha={
m d} f\quad {
m for \ some}\ f\in C_0^\infty(M').$$

(hamiltomorphisms satisfy this; f is a α -generating function of ψ)

The Calabi invariant of ψ is

$$\mathrm{Cal}(\psi):=rac{1}{n'+1}\int_{M'}f(m)rac{w^{\prime\,n'}(m)}{n'!}\in\mathbb{R}.$$

• $Cal(\psi)$ is independent of the choice of α ,

Let (M', ω') be an exact 2n'-dimensional symplectic manifold with $\omega' = d\alpha$ for some 1-form α . Let ψ be a symplectomorphism of M' with compact support such that

$$lpha-\psi^*lpha={
m d} f\quad {
m for \ some}\ f\in C_0^\infty(M').$$

(hamiltomorphisms satisfy this; f is a α -generating function of ψ)

The Calabi invariant of ψ is

$$\mathrm{Cal}(\psi):=rac{1}{n'+1}\int_{M'}f(m)rac{w^{\prime\,n'}(m)}{n'\,!}\in\mathbb{R}.$$

- $Cal(\psi)$ is independent of the choice of α ,
- the restriction Cal_{hamiltomorphisms with compact support} is a homomorphism (see *e.g.* [McDuff/Salamon98]).

Assume that M is exact with $\dim(M) \ge 4$. Suppose that

- Assumption 1.1 holds,
- V has compact support (plus some technical condition),
- $U \subset \mathbb{R}$ is an open set such that
 - (i) $H_0^{-1}(U) \cap \operatorname{Crit}(H_0, \Phi) = \emptyset$,
 - (ii) there exists $\delta > 0$ such that $\left\{ \Phi \cdot
 abla H_0, H \right\}(m) > \delta$ for all $m \in H_0^{-1}(U).$

Assume that M is exact with $\dim(M) \ge 4$. Suppose that

- Assumption 1.1 holds,
- V has compact support (plus some technical condition),
- $U \subset \mathbb{R}$ is an open set such that
 - (i) $H_0^{-1}(U) \cap \operatorname{Crit}(H_0, \Phi) = \emptyset$,
 - (ii) there exists $\delta > 0$ such that $ig\{ \Phi \cdot
 abla H_0, H ig\}(m) > \delta$ for all $m \in H_0^{-1}(U).$

Then

• The maps

 $W_{\pm}: H_0^{-1}(U) o H^{-1}(U) \quad ext{and} \quad S: H_0^{-1}(U) o H_0^{-1}(U)$

are well defined symplectomorphisms.

• For each $E \in U$, $\Sigma_E^0 := H_0^{-1}(\{E\})$ is regular submanifold of M and

$$\Gamma_E = ig\{m \in \Sigma^0_E \mid (\Phi \cdot
abla H_0)(m) = 0ig\}.$$

is (in Σ_E^0) a local transversal section of the vector field $X_{H_0}|_{\Sigma_E^0}$ (see [Abraham/Marsden 78]). • For each $E \in U$, $\Sigma_E^0 := H_0^{-1}(\{E\})$ is regular submanifold of M and

$$\Gamma_E = ig\{m \in \Sigma^0_E \mid (\Phi \cdot
abla H_0)(m) = 0ig\}.$$

is (in Σ_E^0) a local transversal section of the vector field $X_{H_0}|_{\Sigma_E^0}$ (see [Abraham/Marsden 78]).

• The orbit space $\widetilde{\Sigma}^0_E := \Sigma^0_E / \mathbb{R}$, *i.e.* the quotient of Σ^0_E by the group action

$$arphi^{0,E}:\mathbb{R} imes \Sigma^0_E o \Sigma^0_E, \ \ (t,m)\mapsto arphi^{0,E}_t(m),$$

is a symplectic manifold of dimension 2(n-1).

• For each $E \in U$, $\Sigma_E^0 := H_0^{-1}(\{E\})$ is regular submanifold of M and

$$\Gamma_E = ig\{m \in \Sigma^0_E \mid (\Phi \cdot
abla H_0)(m) = 0ig\}.$$

is (in Σ_E^0) a local transversal section of the vector field $X_{H_0}|_{\Sigma_E^0}$ (see [Abraham/Marsden 78]).

• The orbit space $\widetilde{\Sigma}^0_E := \Sigma^0_E / \mathbb{R}$, *i.e.* the quotient of Σ^0_E by the group action

$$arphi^{0,E}:\mathbb{R} imes \Sigma^0_E o \Sigma^0_E, \ \ (t,m)\mapsto arphi^{0,E}_t(m),$$

is a symplectic manifold of dimension 2(n-1).

• The restricted scattering map $S_E := S|_{\Sigma_E^0}$ induces a symplectomorphism \widetilde{S}_E on $\widetilde{\Sigma}_E^0$ (called the Poincaré scattering map) with compact support.

Using a theorem of [Buslaev/Pushnitski10] giving the expression of $\frac{d}{dE} \operatorname{Cal}(\widetilde{S}_E)$ in terms of integrals over transversal sections, we obtain:

Using a theorem of [Buslaev/Pushnitski10] giving the expression of $\frac{d}{dE} \operatorname{Cal}(\widetilde{S}_E)$ in terms of integrals over transversal sections, we obtain:

Theorem 1.11 (Calabi invariant). Under the preceding assumptions, one has

$$egin{aligned} rac{\mathrm{d}}{\mathrm{d}E} \, \mathrm{Cal}ig(\widetilde{S}_Eig) &= -\int_{\Gamma_E} \lim_{r o\infty} au_r(m) \, rac{\omega^{n-1}(m)}{(n-1)!} \ &= \int_{\Gamma_E} rac{(\Phi\circ S)(m)\cdot (
abla H_0\circ S)(m)}{|(
abla H_0\circ S)(m)|^2} \, rac{\omega^{n-1}(m)}{(n-1)!} \,. \end{aligned}$$

Example 1.12 $(H_0(q, p) = h(p))$, the end). If the dimension of $M \simeq \mathbb{R}^{2n}$ is ≥ 4 and V has compact support, then all the assumptions are verified for an open set $U \subset \mathbb{R}$.

Example 1.12 $(H_0(q, p) = h(p))$, the end). If the dimension of $M \simeq \mathbb{R}^{2n}$ is ≥ 4 and V has compact support, then all the assumptions are verified for an open set $U \subset \mathbb{R}$.

So, the theorem on the Calabi invariant applies, and one has for each $E \in U$

$$egin{aligned} &rac{\mathrm{d}}{\mathrm{d}E}\operatorname{Cal}ig(\widetilde{S}_Eig) = \int_{\{(q,p)\in\mathbb{R}^{2n}|h(p)=E,\ q\cdot(
abla h)(p)=0\}} rac{q_+\cdot(
abla h)(p^+)}{|(
abla h)(p^+)|^2}\,rac{\omega^{n-1}(q,p)}{(n-1)!}\,, \ with\ (q_+,p^+) &:= S(q,p). \end{aligned}$$

Example 1.12 $(H_0(q, p) = h(p))$, the end). If the dimension of $M \simeq \mathbb{R}^{2n}$ is ≥ 4 and V has compact support, then all the assumptions are verified for an open set $U \subset \mathbb{R}$.

So, the theorem on the Calabi invariant applies, and one has for each $E \in U$

$$rac{\mathrm{d}}{\mathrm{d}E}\mathrm{Cal}ig(\widetilde{S}_Eig) = \int_{\{(q,p)\in\mathbb{R}^{2n}\mid h(p)=E, \ q\cdot(
abla h)(p)=0\}} rac{q_+\cdot(
abla h)(p^+)}{|(
abla h)(p^+)|^2}\,rac{\omega^{n-1}(q,p)}{(n-1)!}\,,$$

with $(q_+, p^+) := S(q, p).$

In the case $h(p) = |p|^2/2$, one obtains

$$\frac{\mathrm{d}}{\mathrm{d}E}\mathrm{Cal}\big(\widetilde{S}_E\big) = (2E)^{(n-3)/2} \int_{\mathbb{S}^{n-1}} \mathrm{d}^{n-1}\widehat{p} \int_{q \cdot p = 0} \mathrm{d}^{n-1}q \, \big(q_+ \cdot p^+\big),$$

with $\widehat{p} := p/|p|$ and $d^{n-1}\widehat{p}$ the spherical measure on \mathbb{S}^{n-1} .

Example 1.13 (Poincaré ball, the end). If the dimension of $M \simeq \mathring{B}_1 \times \mathbb{R}^n \setminus \{0\}$ is ≥ 4 and V has compact support, then all the assumptions are verified for an open set $U \subset \mathbb{R}$.

Example 1.13 (Poincaré ball, the end). If the dimension of $M \simeq \mathring{B}_1 \times \mathbb{R}^n \setminus \{0\}$ is ≥ 4 and V has compact support, then all the assumptions are verified for an open set $U \subset \mathbb{R}$.

So, the theorem on the Calabi invariant applies, and one has for each $E \in U$

$$egin{aligned} &rac{\mathrm{d}}{\mathrm{d}E}\mathrm{Cal}ig(\widetilde{S}_Eig)\ &=(2E)^{-1/2}\int_{\{(q,p)\in \mathring{B}_1 imes \mathbb{R}^n\setminus\{0\}||p|^2(1-|q|^2)^2=8E,\ p\cdot q=0\}}\Phi(q_+,p^+)\,rac{\omega^{n-1}(q,p)}{(n-1)!}\,, \end{aligned}$$

with
$$\Phi(q,p) = anh^{-1}\left(rac{2(p\cdot q)}{|p|(1+|q|^2)}
ight)$$
 and $(q_+,p^+) := S(q,p).$

Some references

• V. Buslaev and A. Pushnitski. The scattering matrix and associated formulas in Hamiltonian mechanics. *Comm. Math. Phys.*, 2010.

• A. Gournay and R. Tiedra. A formula relating sojourn times to the time of arrival in Hamiltonian dynamics. J. Phys. A : Math. Gen., 2012

• A. Gournay and R. Tiedra. Time delay and Calabi invariant in classical scattering theory. *Rev. Math. Phys.*, 2012

• S. Richard and R. Tiedra. Time delay is a common feature of quantum scattering theory. J. Math. Anal. Appl., 2012.