Time delay and Calabi invariant in classical scattering theory

Rafael Tiedra
(Catholic University of Chile)
Penn State, January 2013

Joint work with: Antoine Gournay (University of Neuchâtel)

Starting observation

If $H_{0}(q, p)=|p|^{2} / 2$ is the kinetic energy on $\mathbb{R}^{2 n}$ and $\Phi_{j}(q, p)=q^{j}$ are the position observables, then

$$
\left\{\left\{\Phi_{j}, H_{0}\right\}, H_{0}\right\}=0 .
$$

Starting observation

If $H_{0}(q, p)=|p|^{2} / 2$ is the kinetic energy on $\mathbb{R}^{2 n}$ and $\Phi_{j}(q, p)=q^{j}$ are the position observables, then

$$
\left\{\left\{\Phi_{j}, H_{0}\right\}, H_{0}\right\}=0 .
$$

Thus,

- the time evolution of Φ_{j} under the flow φ_{t}^{0} of H_{0} is lineal with growth rate $\left\{\Phi_{j}, H_{0}\right\}=p_{j}$

Starting observation

If $H_{0}(q, p)=|p|^{2} / 2$ is the kinetic energy on $\mathbb{R}^{2 n}$ and $\Phi_{j}(q, p)=q^{j}$ are the position observables, then

$$
\left\{\left\{\Phi_{j}, H_{0}\right\}, H_{0}\right\}=0 .
$$

Thus,

- the time evolution of Φ_{j} under the flow φ_{t}^{0} of H_{0} is lineal with growth rate $\left\{\Phi_{j}, H_{0}\right\}=p_{j}$
- trajectories $\left\{\varphi_{t}^{0}(q, p)\right\}_{t \in \mathbb{R}}$ with $p \neq 0$ escape from the balls $B_{r}:=\left\{q \in \mathbb{R}^{n}| | q \mid \leq r\right\}$ as $|t| \rightarrow \infty$

Starting observation

If $H_{0}(q, p)=|p|^{2} / 2$ is the kinetic energy on $\mathbb{R}^{2 n}$ and $\Phi_{j}(q, p)=q^{j}$ are the position observables, then

$$
\left\{\left\{\Phi_{j}, H_{0}\right\}, H_{0}\right\}=0 .
$$

Thus,

- the time evolution of Φ_{j} under the flow φ_{t}^{0} of H_{0} is lineal with growth rate $\left\{\Phi_{j}, H_{0}\right\}=p_{j}$
- trajectories $\left\{\varphi_{t}^{0}(q, p)\right\}_{t \in \mathbb{R}}$ with $p \neq 0$ escape from the balls $B_{r}:=\left\{q \in \mathbb{R}^{n}| | q \mid \leq r\right\}$ as $|t| \rightarrow \infty$
- if $H \in C^{\infty}\left(\mathbb{R}^{2 n}\right)$ is a suitable perturbation of H_{0}, the perturbed trajectories corresponding to $\left\{\varphi_{t}^{0}(q, p)\right\}_{t \in \mathbb{R}}$ also escape from B_{r}
- the difference of sojourn times in B_{r} between the two trajectories may converge to a finite value (called the global time delay for $(q, p))$ as $r \rightarrow \infty$
- the difference of sojourn times in B_{r} between the two trajectories may converge to a finite value (called the global time delay for $(q, p))$ as $r \rightarrow \infty$

What happens when H_{0} and H are abstract Hamiltonians on a symplectic manifold M ?

Free Hamiltonian and position observables

(M, ω) is a symplectic manifold. For $f, g \in C^{\infty}(M)$, we define the Hamiltonian vector field X_{f} and the Poisson bracket $\{f, g\}$ by

$$
\mathrm{d} f(\cdot):=\omega\left(X_{f}, \cdot\right) \quad \text { and } \quad\{f, g\}:=\omega\left(X_{f}, X_{g}\right) .
$$

Free Hamiltonian and position observables

(M, ω) is a symplectic manifold. For $f, g \in C^{\infty}(M)$, we define the Hamiltonian vector field X_{f} and the Poisson bracket $\{f, g\}$ by

$$
\mathrm{d} f(\cdot):=\omega\left(X_{f}, \cdot\right) \quad \text { and } \quad\{f, g\}:=\omega\left(X_{f}, X_{g}\right)
$$

$H_{0} \in C^{\infty}(M)$ is an Hamiltonian with complete flow $\left\{\varphi_{t}^{0}\right\}_{t \in \mathbb{R}}$ and corresponding Hamiltonian evolution equation:

$$
\frac{\mathrm{d}}{\mathrm{~d} t} f \circ \varphi_{t}^{0}=\left\{f, H_{0}\right\} \circ \varphi_{t}^{0}, \quad t \in \mathbb{R}
$$

We consider a family of observables $\Phi \equiv\left(\Phi_{1}, \ldots, \Phi_{d}\right) \in C^{\infty}\left(M ; \mathbb{R}^{d}\right)$ with

$$
\partial_{j} H_{0}:=\left\{\Phi_{j}, H_{0}\right\} \quad \text { and } \quad \nabla H_{0}:=\left(\partial_{1} H_{0}, \ldots, \partial_{d} H_{0}\right) .
$$

We consider a family of observables $\Phi \equiv\left(\Phi_{1}, \ldots, \Phi_{d}\right) \in C^{\infty}\left(M ; \mathbb{R}^{d}\right)$ with

$$
\partial_{j} H_{0}:=\left\{\Phi_{j}, H_{0}\right\} \quad \text { and } \quad \nabla H_{0}:=\left(\partial_{1} H_{0}, \ldots, \partial_{d} H_{0}\right)
$$

The set of critical points

$$
\operatorname{Crit}\left(H_{0}, \Phi\right):=\left(\nabla H_{0}\right)^{-1}(\{0\}) \subset M
$$

is closed and contains the set Crit $\left(H_{0}\right)$ of critical points of H_{0} :

$$
\operatorname{Crit}\left(H_{0}, \Phi\right) \supset \operatorname{Crit}\left(H_{0}\right) \equiv\left\{m \in M \mid X_{H_{0}}(m)=0\right\}
$$

Assumption 1.1 (Position observables). For each $j=1,2, \ldots, d$, we assume that $\left\{\left\{\Phi_{j}, H_{0}\right\}, H_{0}\right\}=0$.

Assumption 1.1 (Position observables). For each $j=1,2, \ldots, d$, we assume that $\left\{\left\{\Phi_{j}, H_{0}\right\}, H_{0}\right\}=0$.

Thus, we have for $t \in \mathbb{R}$ and $m \in M$ that

$$
\begin{aligned}
\left(\Phi_{j} \circ \varphi_{t}^{0}\right)(m) & =\Phi_{j}(m)+t\left\{\Phi_{j}, H_{0}\right\}(m)+\frac{t^{2}}{2}\left\{\left\{\Phi_{j}, H_{0}\right\}, H_{0}\right\}(m)+\cdots \\
& =\Phi_{j}(m)+t\left(\partial_{j} H_{0}\right)(m)
\end{aligned}
$$

and each orbit $\left\{\varphi_{t}^{0}(m)\right\}_{t \in \mathbb{R}}$ stays in $\operatorname{Crit}\left(H_{0}, \Phi\right)$ if $m \in \operatorname{Crit}\left(H_{0}, \Phi\right)$, or stays outside $\operatorname{Crit}\left(H_{0}, \Phi\right)$ and is not periodic if $m \notin \operatorname{Crit}\left(H_{0}, \Phi\right)$.

Example $1.2\left(H_{0}(q, p)=h(p)\right) . M:=T^{*} \mathbb{R}^{n} \simeq \mathbb{R}^{2 n}$,
$\omega:=\sum_{j=1}^{n} \mathrm{~d} q^{j} \wedge \mathrm{~d} p_{j}, H_{0}(q, p):=h(p)$ with $h \in C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$, and $\Phi_{j}(q, p):=q^{j}$.

Example $1.2\left(H_{0}(q, p)=h(p)\right) . M:=T^{*} \mathbb{R}^{n} \simeq \mathbb{R}^{2 n}$,
$\omega:=\sum_{j=1}^{n} \mathrm{~d} q^{j} \wedge \mathrm{~d} p_{j}, H_{0}(q, p):=h(p)$ with $h \in C^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$, and $\Phi_{j}(q, p):=q^{j}$.

Then, $\varphi_{t}^{0}(q, p)=(q+t(\nabla h)(p), p), \nabla H_{0}=\nabla h$, and

$$
\left\{\left\{\Phi_{j}, H_{0}\right\}, H_{0}\right\}=\left\{\left(\partial_{j} h\right)(p), h(p)\right\}=0 .
$$

Furthermore, $\operatorname{Crit}\left(H_{0}\right)=\operatorname{Crit}\left(H_{0}, \Phi\right)=\mathbb{R}^{n} \times(\nabla h)^{-1}(\{0\})$.

Example 1.3 (Poincaré ball). Let $\stackrel{\circ}{B}_{1}:=\left\{q \in \mathbb{R}^{n}| | q \mid<1\right\}$ with

$$
\begin{gathered}
g_{q}\left(X_{q}, Y_{q}\right):=\frac{4}{\left(1-|q|^{2}\right)^{2}}\left(X_{q} \cdot Y_{q}\right), \quad X_{q}, Y_{q} \in T_{q} \stackrel{\circ}{B}_{1} \simeq \mathbb{R}^{n}, \\
H_{0}: T^{*} \stackrel{\circ}{B}_{1} \rightarrow \mathbb{R}, \quad(q, p) \mapsto \frac{1}{2} \sum_{j, k=1}^{n} g^{j k}(q) p_{j} p_{k}=\frac{1}{8}|p|^{2}\left(1-|q|^{2}\right)^{2} .
\end{gathered}
$$

Example 1.3 (Poincaré ball). Let $\dot{B}_{1}:=\left\{q \in \mathbb{R}^{n}| | q \mid<1\right\}$ with

$$
\begin{gathered}
g_{q}\left(X_{q}, Y_{q}\right):=\frac{4}{\left(1-|q|^{2}\right)^{2}}\left(X_{q} \cdot Y_{q}\right), \quad X_{q}, Y_{q} \in T_{q} \stackrel{\circ}{B}_{1} \simeq \mathbb{R}^{n}, \\
H_{0}: T^{*} \dot{B}_{1} \rightarrow \mathbb{R}, \quad(q, p) \mapsto \frac{1}{2} \sum_{j, k=1}^{n} g^{j k}(q) p_{j} p_{k}=\frac{1}{8}|p|^{2}\left(1-|q|^{2}\right)^{2} .
\end{gathered}
$$

H_{0} has complete flow on $M:=T^{*}{\stackrel{\circ}{B_{1}}} \backslash H_{0}^{-1}(\{0\}) \simeq \stackrel{\circ}{B}_{1} \times \mathbb{R}^{n} \backslash\{0\}$,

$$
\Phi: M \rightarrow \mathbb{R}, \quad(q, p) \mapsto \tanh ^{-1}\left(\frac{2(p \cdot q)}{|p|\left(1+|q|^{2}\right)}\right)
$$

satisfies Assumption 1.1 with $\nabla H_{0}=\sqrt{2 H_{0}}$, and
$\operatorname{Crit}\left(H_{0}\right)=\operatorname{Crit}\left(H_{0}, \Phi\right)=\varnothing$.
$\Phi(q, p)$ is the signed geodesic distance between q and the closest point to $0 \in B_{1}$ on the geodesic curve generated by (q, p).

Wave maps and scattering map

Assumption 1.4 (Potential). $H \in C^{\infty}(M)$ has complete flow $\left\{\varphi_{t}\right\}_{t \in \mathbb{R}}$ and $V:=H-H_{0}$ is of bounded support in Φ

Wave maps and scattering map

Assumption 1.4 (Potential). $H \in C^{\infty}(M)$ has complete flow $\left\{\varphi_{t}\right\}_{t \in \mathbb{R}}$ and $V:=H-H_{0}$ is of bounded support in Φ (there exists $R_{V} \geq 0$ such that $|\Phi(m)| \leq R_{V}$ for all $m \in \operatorname{supp}(V)$).

Wave maps and scattering map

Assumption 1.4 (Potential). $H \in C^{\infty}(M)$ has complete flow $\left\{\varphi_{t}\right\}_{t \in \mathbb{R}}$ and $V:=H-H_{0}$ is of bounded support in Φ (there exists $R_{V} \geq 0$ such that $|\Phi(m)| \leq R_{V}$ for all $m \in \operatorname{supp}(V)$).

The sets of Φ-bounded trajectories are

$$
B_{\Phi}^{ \pm}:=\left\{m \in M \mid \exists R \geq 0 \text { such that }\left|\Phi\left(\varphi_{ \pm t}(m)\right)\right| \leq R \text { for all } t \geq 0\right\} .
$$

Wave maps and scattering map

Assumption 1.4 (Potential). $H \in C^{\infty}(M)$ has complete flow $\left\{\varphi_{t}\right\}_{t \in \mathbb{R}}$ and $V:=H-H_{0}$ is of bounded support in Φ (there exists $R_{V} \geq 0$ such that $|\Phi(m)| \leq R_{V}$ for all $m \in \operatorname{supp}(V)$).

The sets of Φ-bounded trajectories are
$B_{\Phi}^{ \pm}:=\left\{m \in M \mid \exists R \geq 0\right.$ such that $\left|\Phi\left(\varphi_{ \pm t}(m)\right)\right| \leq R$ for all $\left.t \geq 0\right\}$.

Theorem 1.5 (Existence of wave maps). Let H_{0}, H satisfy
Assumptions 1.1 and 1.4. Then, the wave maps

$$
W_{ \pm}:=\lim _{t \rightarrow \pm \infty} \varphi_{-t} \circ \varphi_{t}^{0}
$$

exist and are symplectomorphisms from $M \backslash \operatorname{Crit}\left(H_{0}, \Phi\right)$ to $M \backslash B_{\Phi}^{ \pm}$.

Lemma 1.6 (Completeness of wave maps). Let H_{0}, H satisfy Assumptions 1.1 and 1.4, plus some technical condition. Assume there exists $\delta>0$ such that $\left\{\Phi \cdot \nabla H_{0}, H\right\}(m)>\delta$ for all $m \in M$. Then, $B_{\Phi}^{ \pm}=\varnothing$ and the wave maps

$$
W_{ \pm}: M \backslash \operatorname{Crit}\left(H_{0}, \Phi\right) \rightarrow M
$$

and the scattering map

$$
S:=W_{+}^{-1} \circ W_{-}: M \backslash \operatorname{Crit}\left(H_{0}, \Phi\right) \rightarrow M \backslash \operatorname{Crit}\left(H_{0}, \Phi\right)
$$

are well defined symplectomorphisms.

Lemma 1.6 (Completeness of wave maps). Let H_{0}, H satisfy Assumptions 1.1 and 1.4, plus some technical condition. Assume there exists $\delta>0$ such that $\left\{\Phi \cdot \nabla H_{0}, H\right\}(m)>\delta$ for all $m \in M$. Then, $B_{\Phi}^{ \pm}=\varnothing$ and the wave maps

$$
W_{ \pm}: M \backslash \operatorname{Crit}\left(H_{0}, \Phi\right) \rightarrow M
$$

and the scattering map

$$
S:=W_{+}^{-1} \circ W_{-}: M \backslash \operatorname{Crit}\left(H_{0}, \Phi\right) \rightarrow M \backslash \operatorname{Crit}\left(H_{0}, \Phi\right)
$$

are well defined symplectomorphisms.

- The assumption $\left\{\Phi \cdot \nabla H_{0}, H\right\}>\delta$ is a virial-type condition coming from the requirement $\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\left(|\Phi|^{2} \circ \varphi_{t}\right)>\delta$.

Lemma 1.6 (Completeness of wave maps). Let H_{0}, H satisfy Assumptions 1.1 and 1.4, plus some technical condition. Assume there exists $\delta>0$ such that $\left\{\Phi \cdot \nabla H_{0}, H\right\}(m)>\delta$ for all $m \in M$. Then, $B_{\Phi}^{ \pm}=\varnothing$ and the wave maps

$$
W_{ \pm}: M \backslash \operatorname{Crit}\left(H_{0}, \Phi\right) \rightarrow M
$$

and the scattering map

$$
S:=W_{+}^{-1} \circ W_{-}: M \backslash \operatorname{Crit}\left(H_{0}, \Phi\right) \rightarrow M \backslash \operatorname{Crit}\left(H_{0}, \Phi\right)
$$

are well defined symplectomorphisms.

- The assumption $\left\{\Phi \cdot \nabla H_{0}, H\right\}>\delta$ is a virial-type condition coming from the requirement $\frac{\mathrm{d}^{2}}{\mathrm{~d} t^{2}}\left(|\Phi|^{2} \circ \varphi_{t}\right)>\delta$.
- The assumption $\left\{\Phi \cdot \nabla H_{0}, H\right\}>\delta$ can be made local (no need for V to be globally "repulsive").

Figure 1: Wave maps $W_{ \pm}$and scattering map S

Time delay in classical scattering theory

Suppose for a moment that:
Assumption 1.7 (Wave maps).
(i) $W_{ \pm}=\lim _{t \rightarrow \pm \infty} \varphi_{-t} \circ \varphi_{t}^{0}$ exist on some open sets $\mathcal{D}_{ \pm} \subset M$.
(ii) $W_{ \pm}$are invertible, with $W_{ \pm}^{-1}: \operatorname{Ran}\left(W_{ \pm}\right) \rightarrow \mathcal{D}_{ \pm}$.
(iii) $W_{ \pm}$have common ranges $\operatorname{Ran}\left(W_{+}\right)=\operatorname{Ran}\left(W_{-}\right)$.

Time delay in classical scattering theory

Suppose for a moment that:
Assumption 1.7 (Wave maps).
(i) $W_{ \pm}=\lim _{t \rightarrow \pm \infty} \varphi_{-t} \circ \varphi_{t}^{0}$ exist on some open sets $\mathcal{D}_{ \pm} \subset M$.
(ii) $W_{ \pm}$are invertible, with $W_{ \pm}^{-1}: \operatorname{Ran}\left(W_{ \pm}\right) \rightarrow \mathcal{D}_{ \pm}$.
(iii) $W_{ \pm}$have common ranges $\operatorname{Ran}\left(W_{+}\right)=\operatorname{Ran}\left(W_{-}\right)$.
(we have seen conditions guaranteeing this)

- χ_{r}^{Φ}, characteristic function for the set $\Phi^{-1}\left(B_{r}\right)$.
- χ_{r}^{Φ}, characteristic function for the set $\Phi^{-1}\left(B_{r}\right)$.
- Sojourn time in $\Phi^{-1}\left(B_{r}\right)$ for the free trajectory starting from $m_{-} \in \mathcal{D}_{-}$at $t=0$:

$$
T_{r}^{0}\left(m_{-}\right):=\int_{\mathbb{R}} \mathrm{d} t\left(\chi_{r}^{\Phi} \circ \varphi_{t}^{0}\right)\left(m_{-}\right) .
$$

- χ_{r}^{Φ}, characteristic function for the set $\Phi^{-1}\left(B_{r}\right)$.
- Sojourn time in $\Phi^{-1}\left(B_{r}\right)$ for the free trajectory starting from $m_{-} \in \mathcal{D}_{-}$at $t=0$:

$$
T_{r}^{0}\left(m_{-}\right):=\int_{\mathbb{R}} \mathrm{d} t\left(\chi_{r}^{\Phi} \circ \varphi_{t}^{0}\right)\left(m_{-}\right) .
$$

- Corresponding sojourn time for the perturbed trajectory starting from $W_{-}\left(m_{-}\right)$at time $t=0$:

$$
T_{r}\left(m_{-}\right):=\int_{\mathbb{R}} \mathrm{d} t\left(\chi_{r}^{\Phi} \circ \varphi_{t} \circ W_{-}\right)\left(m_{-}\right) .
$$

- χ_{r}^{Φ}, characteristic function for the set $\Phi^{-1}\left(B_{r}\right)$.
- Sojourn time in $\Phi^{-1}\left(B_{r}\right)$ for the free trajectory starting from $m_{-} \in \mathcal{D}_{-}$at $t=0$:

$$
T_{r}^{0}\left(m_{-}\right):=\int_{\mathbb{R}} \mathrm{d} t\left(\chi_{r}^{\Phi} \circ \varphi_{t}^{0}\right)\left(m_{-}\right) .
$$

- Corresponding sojourn time for the perturbed trajectory starting from $W_{-}\left(m_{-}\right)$at time $t=0$:

$$
T_{r}\left(m_{-}\right):=\int_{\mathbb{R}} \mathrm{d} t\left(\chi_{r}^{\Phi} \circ \varphi_{t} \circ W_{-}\right)\left(m_{-}\right) .
$$

- Time delay in $\Phi^{-1}\left(B_{r}\right)$ for the scattering system $\left(H_{0}, H\right)$ with starting point m_{-}:

$$
\tau_{r}\left(m_{-}\right):=T_{r}\left(m_{-}\right)-\frac{1}{2}\left\{T_{r}^{0}\left(m_{-}\right)+\left(T_{r}^{0} \circ S\right)\left(m_{-}\right)\right\} .
$$

Theorem 1.8 (Time delay). Let H_{0} and H satisfy Assumptions 1.1 and 1.7, and let $m_{-} \in \mathcal{D}_{-} \backslash \operatorname{Crit}\left(H_{0}, \Phi\right)$ satisfy $S\left(m_{-}\right) \notin \operatorname{Crit}\left(H_{0}, \Phi\right)$, plus some technical condition. Then,

$$
\lim _{r \rightarrow \infty} \tau_{r}\left(m_{-}\right)=T\left(m_{-}\right)-(T \circ S)\left(m_{-}\right)
$$

with $T: M \backslash \operatorname{Crit}\left(H_{0}, \Phi\right) \rightarrow \mathbb{R}$ the C^{∞}-function given by

$$
T:=\Phi \cdot \frac{\nabla H_{0}}{\left|\nabla H_{0}\right|^{2}} .
$$

Theorem 1.8 (Time delay). Let H_{0} and H satisfy Assumptions 1.1 and 1.7, and let $m_{-} \in \mathcal{D}_{-} \backslash \operatorname{Crit}\left(H_{0}, \Phi\right)$ satisfy $S\left(m_{-}\right) \notin \operatorname{Crit}\left(H_{0}, \Phi\right)$, plus some technical condition. Then,

$$
\lim _{r \rightarrow \infty} \tau_{r}\left(m_{-}\right)=T\left(m_{-}\right)-(T \circ S)\left(m_{-}\right)
$$

with $T: M \backslash \operatorname{Crit}\left(H_{0}, \Phi\right) \rightarrow \mathbb{R}$ the C^{∞}-function given by

$$
T:=\Phi \cdot \frac{\nabla H_{0}}{\left|\nabla H_{0}\right|^{2}} .
$$

$\left(-T(m)\right.$ is the (arrival) time at which a particle in \mathbb{R}^{d} with initial position $\Phi(m)$ and velocity $\left(\nabla H_{0}\right)(m)$ intersects the hyperplane orthogonal to the unit vector $\left.\frac{\left(\nabla H_{0}\right)(m)}{\left|\left(\nabla H_{0}\right)(m)\right|}\right)$

Some comments:

- Set $\tau\left(m_{-}\right):=\lim _{r \rightarrow \infty} \tau_{r}\left(m_{-}\right)$. Since

$$
T \circ \varphi_{t}^{0}=T+t \quad \text { and } \quad \varphi_{t}^{0} \circ S=S \circ \varphi_{t}^{0}
$$

one has

$$
\left(\tau \circ \varphi_{t}^{0}\right)\left(m_{-}\right)=\left\{(T-T \circ S) \circ \varphi_{t}^{0}\right\}\left(m_{-}\right)=\tau\left(m_{-}\right)
$$

meaning that τ is a first integral of the free motion.

Some comments:

- Set $\tau\left(m_{-}\right):=\lim _{r \rightarrow \infty} \tau_{r}\left(m_{-}\right)$. Since

$$
T \circ \varphi_{t}^{0}=T+t \quad \text { and } \quad \varphi_{t}^{0} \circ S=S \circ \varphi_{t}^{0}
$$

one has

$$
\left(\tau \circ \varphi_{t}^{0}\right)\left(m_{-}\right)=\left\{(T-T \circ S) \circ \varphi_{t}^{0}\right\}\left(m_{-}\right)=\tau\left(m_{-}\right)
$$

meaning that τ is a first integral of the free motion.

- The formula of the theorem should be compared to the Eisenbud-Wigner formula of quantum mechanics:

$$
\begin{aligned}
\lim _{r \rightarrow \infty} \tau_{r}(\varphi)=\langle\varphi, T \varphi\rangle_{\mathcal{H}}-\langle S \varphi, T S \varphi\rangle_{\mathcal{H}} & =-\left\langle\varphi, S^{*}[T, S] \varphi\right\rangle_{\mathcal{H}} \\
& =-\left\langle\varphi, i S^{*} \frac{\mathrm{~d} S}{\mathrm{~d} H_{0}} \varphi\right\rangle_{\mathcal{H}}
\end{aligned}
$$

- If

$$
\left|\left(\nabla H_{0}\right)\left(m_{-}\right)\right|^{2}=\left|\left(\nabla H_{0} \circ S\right)\left(m_{-}\right)\right|^{2},
$$

then one can replace in the theorem the symmetrized time delay $\tau_{r}\left(m_{-}\right)$by the unsymmetrized time delay

$$
\tau_{r}^{\text {in }}\left(m_{-}\right):=T_{r}\left(m_{-}\right)-T_{r}^{0}\left(m_{-}\right)
$$

Example $1.9\left(H_{0}(q, p)=h(p)\right.$, continued). Let
$H(q, p):=h(p)+V(q)$ with $V \in C_{c}^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$. Under some conditions on h, one can find an open subset $U \subset \mathbb{R}^{2 n}$ on which all the assumptions are satisfied.

Example $1.9\left(H_{0}(q, p)=h(p)\right.$, continued). Let
$H(q, p):=h(p)+V(q)$ with $V \in C_{c}^{\infty}\left(\mathbb{R}^{n} ; \mathbb{R}\right)$. Under some conditions on h, one can find an open subset $U \subset \mathbb{R}^{2 n}$ on which all the assumptions are satisfied.

So, the theorem on time delay applies, and one has for $\left(q_{-}, p^{-}\right) \in U$

$$
\begin{aligned}
\lim _{r \rightarrow \infty} \tau_{r}\left(q_{-}, p^{-}\right) & =T\left(q_{-}, p^{-}\right)-T\left(q_{+}, p^{+}\right) \\
& =\frac{q_{-} \cdot(\nabla h)\left(p^{-}\right)}{\left|(\nabla h)\left(p^{-}\right)\right|^{2}}-\frac{q_{+} \cdot(\nabla h)\left(p^{+}\right)}{\left|(\nabla h)\left(p^{+}\right)\right|^{2}},
\end{aligned}
$$

with $\left(q_{+}, p^{+}\right):=S\left(q_{-}, p^{-}\right)$.

Example 1.10 (Poincaré ball, continued). Let $H(q, p):=H_{0}(q, p)+V(q)$ with $V \in C^{\infty}\left(\stackrel{\circ}{B}_{1} ; \mathbb{R}\right)$. One can find an open subset $U \subset M$ on which all the assumptions are satisfied.

Example 1.10 (Poincaré ball, continued). Let $H(q, p):=H_{0}(q, p)+V(q)$ with $V \in C^{\infty}\left(\dot{B}_{1} ; \mathbb{R}\right)$. One can find an open subset $U \subset M$ on which all the assumptions are satisfied.

So, the theorem on time delay applies, and one has for $\left(q_{-}, p^{-}\right) \in U$
$=\lim _{r \rightarrow \infty} \tau_{r}\left(q_{-}, p^{-}\right)=T\left(q_{-}, p^{-}\right)-T\left(q_{+}, p^{+}\right)$

$$
=\frac{2\left\{\tanh ^{-1}\left(\frac{2\left(p^{-} \cdot q_{-}\right)}{\left|p^{-}\right|\left(1+\left|q_{-}\right|^{2}\right)}\right)-\tanh ^{-1}\left(\frac{2\left(p^{+} \cdot q_{+}\right)}{\left|p^{+}\right|\left(1+\left|q_{+}\right|^{2}\right)}\right)\right\}}{\left|p^{-}\right|\left(1-\left|q_{-}\right|^{2}\right)},
$$

with $\left(q_{+}, p^{+}\right):=S\left(q_{-}, p^{-}\right)$.

Calabi invariant of the Poincaré scattering map

Let $\left(M^{\prime}, \omega^{\prime}\right)$ be an exact $2 n^{\prime}$-dimensional symplectic manifold with $\omega^{\prime}=\mathrm{d} \alpha$ for some 1-form α. Let ψ be a symplectomorphism of M^{\prime} with compact support such that

$$
\alpha-\psi^{*} \alpha=\mathrm{d} f \quad \text { for some } f \in C_{0}^{\infty}\left(M^{\prime}\right)
$$

(hamiltomorphisms satisfy this; f is a α-generating function of ψ)

Calabi invariant of the Poincaré scattering map

Let $\left(M^{\prime}, \omega^{\prime}\right)$ be an exact $2 n^{\prime}$-dimensional symplectic manifold with $\omega^{\prime}=\mathrm{d} \alpha$ for some 1-form α. Let ψ be a symplectomorphism of M^{\prime} with compact support such that

$$
\alpha-\psi^{*} \alpha=\mathrm{d} f \quad \text { for some } f \in C_{0}^{\infty}\left(M^{\prime}\right)
$$

(hamiltomorphisms satisfy this; f is a α-generating function of ψ)

The Calabi invariant of ψ is

$$
\operatorname{Cal}(\psi):=\frac{1}{n^{\prime}+1} \int_{M^{\prime}} f(m) \frac{w^{\prime n^{\prime}}(m)}{n^{\prime}!} \in \mathbb{R}
$$

Calabi invariant of the Poincaré scattering map

Let $\left(M^{\prime}, \omega^{\prime}\right)$ be an exact $2 n^{\prime}$-dimensional symplectic manifold with $\omega^{\prime}=\mathrm{d} \alpha$ for some 1-form α. Let ψ be a symplectomorphism of M^{\prime} with compact support such that

$$
\alpha-\psi^{*} \alpha=\mathrm{d} f \quad \text { for some } f \in C_{0}^{\infty}\left(M^{\prime}\right)
$$

(hamiltomorphisms satisfy this; f is a α-generating function of ψ)

The Calabi invariant of ψ is

$$
\operatorname{Cal}(\psi):=\frac{1}{n^{\prime}+1} \int_{M^{\prime}} f(m) \frac{w^{\prime n^{\prime}}(m)}{n^{\prime}!} \in \mathbb{R}
$$

- $\operatorname{Cal}(\psi)$ is independent of the choice of α,

Calabi invariant of the Poincaré scattering map

Let $\left(M^{\prime}, \omega^{\prime}\right)$ be an exact $2 n^{\prime}$-dimensional symplectic manifold with $\omega^{\prime}=\mathrm{d} \alpha$ for some 1-form α. Let ψ be a symplectomorphism of M^{\prime} with compact support such that

$$
\alpha-\psi^{*} \alpha=\mathrm{d} f \quad \text { for some } f \in C_{0}^{\infty}\left(M^{\prime}\right)
$$

(hamiltomorphisms satisfy this; f is a α-generating function of ψ)

The Calabi invariant of ψ is

$$
\operatorname{Cal}(\psi):=\frac{1}{n^{\prime}+1} \int_{M^{\prime}} f(m) \frac{w^{\prime n^{\prime}}(m)}{n^{\prime}!} \in \mathbb{R}
$$

- $\operatorname{Cal}(\psi)$ is independent of the choice of α,
- the restriction $\left.\mathrm{Cal}\right|_{\{\text {hamiltomorphisms with compact support }\}}$ is a homomorphism (see e.g. [McDuff/Salamon 98]).

Assume that M is exact with $\operatorname{dim}(M) \geq 4$. Suppose that

- Assumption 1.1 holds,
- V has compact support (plus some technical condition),
- $U \subset \mathbb{R}$ is an open set such that
(i) $H_{0}^{-1}(U) \cap \operatorname{Crit}\left(H_{0}, \Phi\right)=\varnothing$,
(ii) there exists $\delta>0$ such that $\left\{\Phi \cdot \nabla H_{0}, H\right\}(m)>\delta$ for all $m \in H_{0}^{-1}(U)$.

Assume that M is exact with $\operatorname{dim}(M) \geq 4$. Suppose that

- Assumption 1.1 holds,
- V has compact support (plus some technical condition),
- $U \subset \mathbb{R}$ is an open set such that
(i) $H_{0}^{-1}(U) \cap \operatorname{Crit}\left(H_{0}, \Phi\right)=\varnothing$,
(ii) there exists $\delta>0$ such that $\left\{\Phi \cdot \nabla H_{0}, H\right\}(m)>\delta$ for all $m \in H_{0}^{-1}(U)$.

Then

- The maps

$$
W_{ \pm}: H_{0}^{-1}(U) \rightarrow H^{-1}(U) \quad \text { and } \quad S: H_{0}^{-1}(U) \rightarrow H_{0}^{-1}(U)
$$

are well defined symplectomorphisms.

- For each $E \in U, \Sigma_{E}^{0}:=H_{0}^{-1}(\{E\})$ is regular submanifold of M and

$$
\Gamma_{E}=\left\{m \in \Sigma_{E}^{0} \mid\left(\Phi \cdot \nabla H_{0}\right)(m)=0\right\} .
$$

is (in Σ_{E}^{0}) a local transversal section of the vector field $\left.X_{H_{0}}\right|_{\Sigma_{E}^{0}}$ (see [Abraham/Marsden 78]).

- For each $E \in U, \Sigma_{E}^{0}:=H_{0}^{-1}(\{E\})$ is regular submanifold of M and

$$
\Gamma_{E}=\left\{m \in \Sigma_{E}^{0} \mid\left(\Phi \cdot \nabla H_{0}\right)(m)=0\right\} .
$$

is (in Σ_{E}^{0}) a local transversal section of the vector field $\left.X_{H_{0}}\right|_{\Sigma_{E}^{0}}$ (see [Abraham/Marsden 78]).

- The orbit space $\widetilde{\Sigma}_{E}^{0}:=\Sigma_{E}^{0} / \mathbb{R}$, i.e. the quotient of Σ_{E}^{0} by the group action

$$
\varphi^{0, E}: \mathbb{R} \times \Sigma_{E}^{0} \rightarrow \Sigma_{E}^{0}, \quad(t, m) \mapsto \varphi_{t}^{0, E}(m)
$$

is a symplectic manifold of dimension $2(n-1)$.

- For each $E \in U, \Sigma_{E}^{0}:=H_{0}^{-1}(\{E\})$ is regular submanifold of M and

$$
\Gamma_{E}=\left\{m \in \Sigma_{E}^{0} \mid\left(\Phi \cdot \nabla H_{0}\right)(m)=0\right\} .
$$

is (in Σ_{E}^{0}) a local transversal section of the vector field $\left.X_{H_{0}}\right|_{\Sigma_{E}^{0}}$ (see [Abraham/Marsden 78]).

- The orbit space $\widetilde{\Sigma}_{E}^{0}:=\Sigma_{E}^{0} / \mathbb{R}$, i.e. the quotient of Σ_{E}^{0} by the group action

$$
\varphi^{0, E}: \mathbb{R} \times \Sigma_{E}^{0} \rightarrow \Sigma_{E}^{0}, \quad(t, m) \mapsto \varphi_{t}^{0, E}(m)
$$

is a symplectic manifold of dimension $2(n-1)$.

- The restricted scattering map $S_{E}:=\left.S\right|_{\Sigma_{E}^{0}}$ induces a symplectomorphism \widetilde{S}_{E} on $\widetilde{\Sigma}_{E}^{0}$ (called the Poincaré scattering map) with compact support.

Using a theorem of [Buslaev/Pushnitski10] giving the expression of $\frac{\mathrm{d}}{\mathrm{d} E} \operatorname{Cal}\left(\widetilde{S}_{E}\right)$ in terms of integrals over transversal sections, we obtain:

Using a theorem of [Buslaev/Pushnitski10] giving the expression of $\frac{\mathrm{d}}{\mathrm{d} E} \operatorname{Cal}\left(\widetilde{S}_{E}\right)$ in terms of integrals over transversal sections, we obtain:

Theorem 1.11 (Calabi invariant). Under the preceding assumptions, one has

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} E} \operatorname{Cal}\left(\widetilde{S}_{E}\right) & =-\int_{\Gamma_{E}} \lim _{r \rightarrow \infty} \tau_{r}(m) \frac{\omega^{n-1}(m)}{(n-1)!} \\
& =\int_{\Gamma_{E}} \frac{(\Phi \circ S)(m) \cdot\left(\nabla H_{0} \circ S\right)(m)}{\left|\left(\nabla H_{0} \circ S\right)(m)\right|^{2}} \frac{\omega^{n-1}(m)}{(n-1)!} .
\end{aligned}
$$

Example $1.12\left(H_{0}(q, p)=h(p)\right.$, the end). If the dimension of $M \simeq \mathbb{R}^{2 n}$ is ≥ 4 and V has compact support, then all the assumptions are verified for an open set $U \subset \mathbb{R}$.

Example $1.12\left(H_{0}(q, p)=h(p)\right.$, the end). If the dimension of $M \simeq \mathbb{R}^{2 n}$ is ≥ 4 and V has compact support, then all the assumptions are verified for an open set $U \subset \mathbb{R}$.

So, the theorem on the Calabi invariant applies, and one has for each $E \in U$
$\frac{\mathrm{d}}{\mathrm{d} E} \operatorname{Cal}\left(\widetilde{S}_{E}\right)=\int_{\left\{(q, p) \in \mathbb{R}^{2 n} \mid h(p)=E, q \cdot(\nabla h)(p)=0\right\}} \frac{q_{+} \cdot(\nabla h)\left(p^{+}\right)}{\left|(\nabla h)\left(p^{+}\right)\right|^{2}} \frac{\omega^{n-1}(q, p)}{(n-1)!}$,
with $\left(q_{+}, p^{+}\right):=S(q, p)$.

Example $1.12\left(H_{0}(q, p)=h(p)\right.$, the end). If the dimension of $M \simeq \mathbb{R}^{2 n}$ is ≥ 4 and V has compact support, then all the assumptions are verified for an open set $U \subset \mathbb{R}$.

So, the theorem on the Calabi invariant applies, and one has for each $E \in U$
$\frac{\mathrm{d}}{\mathrm{d} E} \operatorname{Cal}\left(\widetilde{S}_{E}\right)=\int_{\left\{(q, p) \in \mathbb{R}^{2 n} \mid h(p)=E, q \cdot(\nabla h)(p)=0\right\}} \frac{q_{+} \cdot(\nabla h)\left(p^{+}\right)}{\left|(\nabla h)\left(p^{+}\right)\right|^{2}} \frac{\omega^{n-1}(q, p)}{(n-1)!}$,
with $\left(q_{+}, p^{+}\right):=S(q, p)$.
In the case $h(p)=|p|^{2} / 2$, one obtains

$$
\frac{\mathrm{d}}{\mathrm{~d} E} \operatorname{Cal}\left(\widetilde{S}_{E}\right)=(2 E)^{(n-3) / 2} \int_{\mathbb{S}^{n-1}} \mathrm{~d}^{n-1} \widehat{p} \int_{q \cdot p=0} \mathrm{~d}^{n-1} q\left(q_{+} \cdot p^{+}\right)
$$

with $\widehat{p}:=p /|p|$ and $\mathrm{d}^{n-1} \widehat{p}$ the spherical measure on \mathbb{S}^{n-1}.

Example 1.13 (Poincaré ball, the end). If the dimension of $M \simeq \stackrel{\circ}{B}_{1} \times \mathbb{R}^{n} \backslash\{0\}$ is ≥ 4 and V has compact support, then all the assumptions are verified for an open set $U \subset \mathbb{R}$.

Example 1.13 (Poincaré ball, the end). If the dimension of $M \simeq \stackrel{\circ}{B}_{1} \times \mathbb{R}^{n} \backslash\{0\}$ is ≥ 4 and V has compact support, then all the assumptions are verified for an open set $U \subset \mathbb{R}$.

So, the theorem on the Calabi invariant applies, and one has for each $E \in U$

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} E} \operatorname{Cal}\left(\widetilde{S}_{E}\right) \\
& =(2 E)^{-1 / 2} \int_{\left\{(q, p) \in \dot{B}_{1} \times \mathbb{R}^{n} \backslash\{0\}| || |^{2}\left(1-|q|^{2}\right)^{2}=8 E, p \cdot q=0\right\}} \Phi\left(q_{+}, p^{+}\right) \frac{\omega^{n-1}(q, p)}{(n-1)!}, \\
& \text { with } \Phi(q, p)=\tanh ^{-1}\left(\frac{2(p \cdot q)}{|p|\left(1+|q|^{2}\right)}\right) \text { and }\left(q_{+}, p^{+}\right):=S(q, p) .
\end{aligned}
$$

Some references

- V. Buslaev and A. Pushnitski. The scattering matrix and associated formulas in Hamiltonian mechanics. Comm. Math. Phys., 2010.
- A. Gournay and R. Tiedra. A formula relating sojourn times to the time of arrival in Hamiltonian dynamics. J. Phys. A : Math. Gen., 2012
- A. Gournay and R. Tiedra. Time delay and Calabi invariant in classical scattering theory. Rev. Math. Phys., 2012
- S. Richard and R. Tiedra. Time delay is a common feature of quantum scattering theory. J. Math. Anal. Appl., 2012.

