Decay estimates for unitary representations with applications to continuous- and discrete-time models

Rafael Tiedra de Aldecoa
Pontifical Catholic University of Chile

Torun, October 2021

Joint work with Serge Richard (Nagoya)

Table of Contents

(1) General case
(2) Unitary representations with self-adjoint generator
(3) Unitary representations with unitary generator
(4) Examples
(5) References

General case

- \mathcal{H}, Hilbert space with norm $\|\cdot\|_{\mathcal{H}}$ and scalar product $\langle\cdot, \cdot\rangle_{\mathcal{H}}$
- $\mathscr{B}(\mathcal{H})$, set of bounded linear operators on \mathcal{H}
- $\mathscr{K}(\mathcal{H})$, set of compact operators on \mathcal{H}
- A, self-adjoint operator in \mathcal{H} with domain $\mathcal{D}(A)$

Definition

$S \in C^{k}(A)$ if $S \in \mathscr{B}(\mathcal{H})$ and if the map

$$
\mathbb{R} \ni t \mapsto \mathrm{e}^{-i t A} S \mathrm{e}^{i t A} \in \mathscr{B}(\mathcal{H})
$$

is strongly of class C^{k}.
Intuitively, if $S \in C^{k}(A)$, then the k-th commutator

$$
[\cdots[[S, \underbrace{A], A], \ldots, A]}_{k \text { times }}
$$

is a well-defined bounded operator.

Theorem

Let $\left(U_{j}\right)_{j \in J}$ be a net in $U(\mathcal{H})$, let $\left(\ell_{j}\right)_{j \in J} \subset[0, \infty)$ satisfy $\ell_{j} \rightarrow \infty$, let A be self-adjoint in \mathcal{H} with $U_{j} \in C^{1}(A)$ for each $j \in J$, and suppose that

$$
D:=\operatorname{s-lim}_{j} D_{j} \quad \text { with } \quad D_{j}:=\frac{1}{\ell_{j}}\left[A, U_{j}\right] U_{j}^{-1}
$$

exists.
(a) For each $\varphi=D \widetilde{\varphi} \in D \mathcal{D}(A)$ and $\psi \in \mathcal{D}(A)$ there is $c_{\varphi, \psi} \geq 0$ such that

$$
\left|\left\langle\varphi, U_{j} \psi\right\rangle_{\mathcal{H}}\right| \leq\left\|\left(D-D_{j}\right) \widetilde{\varphi}\right\|_{\mathcal{H}}\|\psi\|_{\mathcal{H}}+\frac{1}{\ell_{j}} c_{\varphi, \psi}, \quad \ell_{j}>0 .
$$

In particular, $\lim _{j}\left\langle\xi, U_{j} \zeta\right\rangle_{\mathcal{H}}=0$ for all $\xi \in \operatorname{ker}(D)^{\perp}$ and $\zeta \in \mathcal{H}$.

Theorem (Continued)

(b) Assume that $D=D_{j}$ for all $j \in J$. Then for each $\varphi \in D \mathcal{D}(A)$ and $\psi \in \mathcal{D}(A)$ there is $c_{\varphi, \psi} \geq 0$ such that

$$
\left|\left\langle\varphi, U_{j} \psi\right\rangle_{\mathcal{H}}\right| \leq \frac{1}{\ell_{j}} c_{\varphi, \psi}, \quad \ell_{j}>0 .
$$

(c) Assume that $D=D_{j}$ for all $j \in J$, that $D \in C^{1}(A)$, and that $[A, D]=D B$ with $B \in C^{(n-1)}(A)$ and $[D, B]=0(n \geq 1)$. Then for each $\varphi \in D^{n} \mathcal{D}\left(A^{n}\right)$ and $\psi \in \mathcal{D}\left(A^{n}\right)$ there is $c_{\varphi, \psi} \geq 0$ such that

$$
\left|\left\langle\varphi, U_{j} \psi\right\rangle_{\mathcal{H}}\right| \leq \frac{1}{\ell_{j}^{n}} c_{\varphi, \psi}, \quad \ell_{j}>0
$$

Remark

If $[A, \cdot]$ is seen as a derivation on the set $\left(U_{j}\right)$, then D corresponds to an operator-valued winding number for the map $j \mapsto U_{j}$ (the usual logarithmic derivative $\frac{d z}{z}$ is replaced by the "logaritmic derivative" $\left.\left[A, U_{j}\right] U_{j}^{-1}\right)$.

Remark

The U_{j} can be given by a representation $\mathscr{U}: X \rightarrow \mathrm{U}(\mathcal{H})$ of a topological group X and the ℓ_{j} by a proper length function $\ell: X \rightarrow[0, \infty)$.

Remark

If the U_{j} are given by a representation, then the property

$$
\lim _{j}\left\langle\xi, U_{j} \zeta\right\rangle_{\mathcal{H}}=0, \quad \xi \in \operatorname{ker}(D)^{\perp}, \zeta \in \mathcal{H}
$$

is a mixing property of the representation in $\operatorname{ker}(D)^{\perp}$.

Idea of the proof.

(a)

$$
\begin{aligned}
\left|\left\langle\varphi, U_{j} \psi\right\rangle_{\mathcal{H}}\right| & =\left|\left\langle\left(D-D_{j}\right) \widetilde{\varphi}, U_{j} \psi\right\rangle_{\mathcal{H}}+\left\langle D_{j} \widetilde{\varphi}, U_{j} \psi\right\rangle_{\mathcal{H}}\right| \\
& \leq\left\|\left(D-D_{j}\right) \widetilde{\varphi}\right\|_{\mathcal{H}}\|\psi\|_{\mathcal{H}}+\frac{1}{\ell_{j}}\left|\left\langle\left[A, U_{j}\right] U_{j}^{-1} \widetilde{\varphi}, U_{j} \psi\right\rangle_{\mathcal{H}}\right| \\
& \leq\left\|\left(D-D_{j}\right) \widetilde{\varphi}\right\|_{\mathcal{H}}\|\psi\|_{\mathcal{H}}+\frac{1}{\ell_{\ell_{2}}}\left|\left\langle A \widetilde{\varphi}, U_{j} \psi\right\rangle_{\mathcal{H}}\right|+\frac{1}{\ell_{j}}\left|\left\langle\widetilde{\varphi}, U_{j} A \psi\right\rangle_{\mathcal{H}}\right| \\
& \leq\left\|\left(D-D_{j}\right) \widetilde{\varphi}\right\|_{\mathcal{H}}\|\psi\|_{\mathcal{H}}+\frac{1}{\ell_{j}} c_{\varphi, \psi}
\end{aligned}
$$

with $c_{\varphi, \psi}:=\|A \widetilde{\varphi}\|_{\mathcal{H}}\|\psi\|_{\mathcal{H}}+\|\widetilde{\varphi}\|_{\mathcal{H}}\|A \psi\|_{\mathcal{H}}$.
(b) Direct consequence of (a).
(c) Induction over n, starting from (b) for $n=1$.

Unitary representations with self-adjoint generator

Suppose that the U_{j} are given by a strongly continuous representation $\mathscr{U}: \mathbb{R} \rightarrow \mathrm{U}(\mathcal{H})$.

Then Stone's theorem implies the existence of a self-adjoint operator H such that $\mathscr{U}(t)=\mathrm{e}^{-i t H}$ for each $t \in \mathbb{R}$.

- continuous time case -

Proposition (The case $[i H, A]=f(H)$)

Let H and A be self-adjoint in \mathcal{H}, assume that $(H-i)^{-1} \in C^{1}(A)$ with $[i H, A]=f(H)$ for some $f: \mathbb{R} \rightarrow \mathbb{R}$, and set $g(x):=f(x)\left(1+x^{2}\right)^{-1}$.
(a) For each $\varphi \in g(H) \mathcal{D}(A)$ and $\psi \in \mathcal{D}(A)$ there is $c_{\varphi, \psi} \geq 0$ such that

$$
\left|\left\langle\varphi, \mathrm{e}^{-i t H} \psi\right\rangle_{\mathcal{H}}\right| \leq \frac{1}{t} c_{\varphi, \psi}, \quad t>0 .
$$

(b) If $g(H) \mathcal{D}(A) \subset \mathcal{D}(A)$, then $\left.H\right|_{\operatorname{ker}(f(H))^{\perp}}$ has purely a.c. spectrum.
(c) Suppose that $f \in C^{n}(\mathbb{R})(n \geq 1)$ with $g^{(k)} \in L^{2}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$ for $k=0, \ldots, n$ and $g^{(n)}$ uniformly continuous. Then for each $\varphi \in g(H)^{n} \mathcal{D}\left(A^{n}\right)$ and $\psi \in \mathcal{D}\left(A^{n}\right)$ there is $c_{\varphi, \psi} \geq 0$ such that

$$
\left|\left\langle\varphi, \mathrm{e}^{-i t H} \psi\right\rangle_{\mathcal{H}}\right| \leq \frac{1}{t^{n}} c_{\varphi, \psi}, \quad t>0 .
$$

Idea of the proof.

(a) Apply point (b) of the theorem in the case $\left(U_{j}\right)_{j \in J}=\left(\mathrm{e}^{-i t H}\right)_{t>0}$, the set $\left(\ell_{j}\right)_{j \in J}=(t)_{t>0}$, the operator $\widetilde{A}=(H+i)^{-1} A(H-i)^{-1}$, and

$$
\begin{aligned}
D_{t}=\frac{1}{t}\left[\widetilde{A}, \mathrm{e}^{-i t H}\right] \mathrm{e}^{i t H} & =\frac{1}{t} \int_{0}^{t} \mathrm{~d} \tau \mathrm{e}^{-i \tau H}(H+i)^{-1}[i H, A](H-i)^{-1} \mathrm{e}^{i \tau H} \\
& =g(H) \\
& =D
\end{aligned}
$$

(b) Point (a) implies that $t \mapsto\left\langle\psi, \mathrm{e}^{-i t H} \psi\right\rangle_{\mathcal{H}}$ is in $\mathrm{L}^{2}(\mathbb{R})$ for suitable $\psi \in \mathcal{H}$. Then Plancherel's theorem implies that the spectral measures $m_{\psi}(\cdot):=\left\|E^{H}(\cdot) \psi\right\|_{\mathcal{H}}^{2}$ are a.c.
(c) The assumptions on f and g guarantee that point (c) of the theorem applies.

Unitary representations with unitary generator

Suppose that the U_{j} are given by a representation $\mathscr{U}: \mathbb{Z} \rightarrow \mathrm{U}(\mathcal{H})$.
Then, since \mathbb{Z} has generator 1 , there exists a unitary operator U such that $\mathscr{U}(m)=U^{m}$ for each $m \in \mathbb{Z}$.

- discrete time case -

Proposition (The case $[A, U]=\gamma(U)$)

Let U and A be unitary and self-adjoint in \mathcal{H}, assume that $U \in C^{1}(A)$ with $[A, U]=\gamma(U)$ for some $\gamma: \mathbb{S}^{1} \rightarrow \mathbb{C}$, and set $\eta(U):=\gamma(U) U^{-1}$.
(a) For each $\varphi \in \eta(U) \mathcal{D}(A)$ and $\psi \in \mathcal{D}(A)$ there is $c_{\varphi, \psi} \geq 0$ such that

$$
\left|\left\langle\varphi, U^{n} \psi\right\rangle_{\mathcal{H}}\right| \leq \frac{1}{n} c_{\varphi, \psi}, \quad n \geq 1 .
$$

(b) If $\eta(U) \mathcal{D}(A) \subset \mathcal{D}(A)$, then $\left.U\right|_{\operatorname{ker}(\gamma(U))^{\perp}}$ has purely a.c. spectrum.
(c) Suppose that $\gamma \in C^{k}\left(\mathbb{S}^{1}\right)(k \geq 1)$. Then for each $\varphi \in \eta(U)^{k} \mathcal{D}\left(A^{k}\right)$ and $\psi \in \mathcal{D}\left(A^{k}\right)$ there is $c_{\varphi, \psi} \geq 0$ such that

$$
\left|\left\langle\varphi, U^{n} \psi\right\rangle_{\mathcal{H}}\right| \leq \frac{1}{n^{k}} c_{\varphi, \psi}, \quad n \geq 1
$$

Idea of the proof.

Similar to the self-adjoint case.

Examples

The theory applies to various models:

- Left regular representation
- Schrödinger operator in \mathbb{R}^{n}
- Dirac operator in \mathbb{R}^{3}
- Quantum waveguides in \mathbb{R}^{n}
- Stark Hamiltonian in \mathbb{R}^{n}
- Fractional Laplacian in \mathbb{R}^{n}
- Horocycle flow
- Adjacency matrices
- Jacobi matrices
- Schrödinger operators on Fock spaces
- Multiplication by λ in $\mathrm{L}^{2}\left(\mathbb{R}_{+}, \mathrm{d} \mu\right)$
- $H=-\partial_{x x}+\partial_{y y}$ in \mathbb{R}^{2}
- $H=-X^{2-s} \Delta-\Delta X^{2-s}$ in \mathbb{R}_{+}
- Quantum walks on \mathbb{Z}
- Quantum walks on trees
- Skew products

Left regular representation

- X, σ-compact locally compact Hausdorff group with identity e and left Haar measure μ.
- ℓ, proper length function on X,
(L1) $\ell(e)=0$,
(L2) $\ell\left(x^{-1}\right)=\ell(x)$ for all $x \in X$,
(L3) $\ell(x y) \leq \ell(x)+\ell(y)$ for all $x, y \in X$,
(L4) if $K \subset[0, \infty)$ is compact, then $\ell^{-1}(K) \subset X$ is relatively compact.
- $\mathscr{U}: X \rightarrow \mathrm{U}(\mathcal{H})$, left regular representation of X on \mathcal{H}

$$
\mathscr{U}(x) \varphi:=\varphi\left(x^{-1} \cdot\right), \quad x \in X, \varphi \in \mathcal{H}:=\mathrm{L}^{2}(X, \mu) .
$$

Let A be the operator of multiplication by ℓ

$$
A \varphi:=\ell \varphi, \quad \varphi \in \mathcal{D}(A):=\left\{\varphi \in \mathcal{H} \mid\|\ell \varphi\|_{\mathcal{H}}<\infty\right\}
$$

Then for any net $\left(x_{j}\right)_{j \in J} \subset X$ with $x_{j} \rightarrow \infty$ we have

$$
D:=s-\lim _{j} D_{j}=s-\lim _{j} \frac{1}{\ell\left(x_{j}\right)}\left[A, \mathscr{U}\left(x_{j}\right)\right] \mathscr{U}\left(x_{j}\right)^{-1}=\cdots=-1 .
$$

Thus point (a) of the theorem implies that for each $\varphi, \psi \in \mathcal{D}(A)$ there is $c_{\varphi, \psi} \geq 0$ such that

$$
\left|\left\langle\varphi, \mathscr{U}\left(x_{j}\right) \psi\right\rangle_{\mathcal{H}}\right| \leq\left\|\left(D-D_{j}\right) \varphi\right\|_{\mathcal{H}}\|\psi\|_{\mathcal{H}}+\frac{1}{\ell\left(x_{j}\right)} c_{\varphi, \psi}, \quad \ell\left(x_{j}\right)>0 .
$$

(new proof - not using convolutions - of the mixing property of the left regular representation)

Remark

Doing explicit computations, one can show higher decay estimates such as

$$
\left|\left\langle\varphi, \mathscr{U}\left(x_{j}\right) \psi\right\rangle_{\mathcal{H}}\right| \leq \frac{1}{\ell\left(x_{j}\right)} c_{\varphi, \psi} \quad \text { or } \quad\left|\left\langle\varphi, \mathscr{U}\left(x_{j}\right) \psi\right\rangle_{\mathcal{H}}\right| \leq \frac{1}{\ell\left(x_{j}\right)^{2}} c_{\varphi, \psi} .
$$

Remark

In general \mathscr{U} doesn't have neither a self-adjoint generator nor a unitary generator.

Horocycle flow

- Σ, finite volume Riemann surface of genus ≥ 2
- $M:=T^{1} \Sigma$, unit tangent bundle of Σ with probability measure μ_{Ω} induced by volume form Ω
- μ_{Ω}-preserving flows: horocycle $F_{1}:=\left(F_{1, t}\right)_{t \in \mathbb{R}}$ and geodesic $F_{2}:=\left(F_{2, t}\right)_{t \in \mathbb{R}}$
- Self-adjoint generator H_{j} in $\mathcal{H}:=\mathrm{L}^{2}\left(M, \mu_{\Omega}\right)$,

$$
H_{j} \varphi:=-i \mathcal{L}_{X_{j}} \varphi, \quad \varphi \in C_{\mathrm{c}}^{\infty}(M)
$$

with X_{j} the vector field associated to F_{j} and $\mathcal{L}_{X_{j}}$ its Lie derivative

One has $\left(H_{1}-i\right)^{-1} \in C^{1}\left(H_{2}\right)$ with $\left[i H_{1}, H_{2}\right]=H_{1}$. So, the proposition applies with $f\left(H_{1}\right)=H_{1}, g\left(H_{1}\right)=H_{1}\left(1+H_{1}^{2}\right)^{-1}$ and $\operatorname{ker}\left(f\left(H_{1}\right)\right)=\operatorname{ker}\left(H_{1}\right)$.

Thus $\left.H_{1}\right|_{\text {ker }\left(H_{1}\right)^{\perp}}$ has purely a.c. spectrum (well-known) and for each $\varphi \in g\left(H_{1}\right)^{n} \mathcal{D}\left(H_{2}^{n}\right)$ and $\psi \in \mathcal{D}\left(H_{2}^{n}\right)(n \geq 1)$ there is $c_{\varphi, \psi} \geq 0$ such that

$$
\left|\left\langle\varphi, \psi \circ F_{1, t}\right\rangle_{\mathcal{H}}\right|=\left|\left\langle\varphi, \mathrm{e}^{-i t H_{1}} \psi\right\rangle_{\mathcal{H}}\right| \leq \frac{1}{t^{n}} c_{\varphi, \psi}, \quad t>0 .
$$

(new proof of polynomial decay of correlations for the horocycle flow not using the identification $M \simeq \Gamma \backslash \operatorname{PSL}(2, \mathbb{R})$ or representation theory)

Remark

In the case of a time-change of the horocycle flow and Σ compact, one "only" obtains the mixing property with this approach.

Quantum walks on trees

- $\mathcal{T}:=\left\langle a_{1}, \ldots, a_{d} \mid a_{1}^{2}=\cdots=a_{d}^{2}=e\right\rangle$, homogeneous tree of odd degree $d \geq 3$ and word length $|\cdot|$

- $\mathcal{T}_{\mathrm{e}}:=\{x \in \mathcal{T}| | x \mid \in 2 \mathbb{N}\}$ and $\mathcal{T}_{\mathrm{o}}:=\{x \in \mathcal{T}| | x \mid \in 2 \mathbb{N}+1\}$ with characteristic functions $\chi_{\mathrm{e}}:=\chi_{\mathcal{T}_{\mathrm{e}}}$ and $\chi_{\mathrm{o}}:=\chi_{\mathcal{T}_{\mathrm{o}}}$.
- Quantum walk with evolution operator $U:=S C$ in $\mathcal{H}:=\ell^{2}\left(\mathcal{T}, \mathbb{C}^{d}\right)$

$$
\begin{gathered}
S:=\left(\begin{array}{ccc}
S_{1+1,1+2} & & 0 \\
& \ddots & \\
0 & & S_{d+1, d+2}
\end{array}\right), \quad S_{d, d+1}:=S_{d, 1}, S_{d+1, d+2}:=S_{1,2}, \\
\\
S_{i, j} f:=\chi_{\mathrm{e}} f\left(\cdot a_{i}\right)+\chi_{\mathrm{o}} f\left(\cdot a_{j}\right), \quad i, j \in\{1, \ldots, d\}, f \in \ell^{2}(\mathcal{T}), \\
\\
(C \varphi)(x):=C(x) \varphi(x), \quad \varphi \in \mathcal{H}, x \in \mathcal{T}, C(x) \in U(d) .
\end{gathered}
$$

Assumption (Short-range)

For $i=1, \ldots, d$, there is a diagonal matrix $C_{i} \in \mathrm{U}(d)$ and $\varepsilon_{i}>0$ such that

$$
\left\|C(x)-C_{i}\right\|_{\mathscr{B}\left(\mathbb{C}^{d}\right)} \leq \text { Const. }\left(1+|x|^{2}\right)^{-\left(1+\varepsilon_{i}\right) / 2} \quad \text { if } x \in \mathcal{T}_{i}
$$

where $\mathcal{T}_{i}:=\left\{x \in \mathcal{T} \mid\right.$ the first letter of $x \in \mathcal{T}$ is $\left.a_{i}\right\}$.

There exist A self-adjoint in \mathcal{H}, U_{0} unitary in \mathcal{H}_{0}, A_{0} self-adjoint in \mathcal{H}_{0} and $J \in \mathscr{B}\left(\mathcal{H}_{0}, \mathcal{H}\right)$ such that $U \in C^{1}(A), U_{0} \in C^{\infty}\left(A_{0}\right)$ and

$$
J J^{*}=1_{\mathcal{H}}, \quad\left[A_{0}, U_{0}\right] U_{0}^{-1}=2, \quad[A, U] U^{-1}-J\left[A_{0}, U_{0}\right] U_{0}^{-1} J^{*} \in \mathscr{K}(\mathcal{H})
$$

Then, by compacity arguments:

$$
\begin{align*}
D=s-\lim _{n \rightarrow \infty} D_{n} & =\underset{n \rightarrow \infty}{s-\lim _{n}} \frac{1}{n}\left[A, U^{n}\right] U^{-n} \\
& =\underset{n \rightarrow \infty}{s-\lim _{n}} \frac{1}{n} \sum_{m=0}^{n-1} U^{m}\left([A, U] U^{-1}\right) U^{-m} \\
& =\underset{n \rightarrow \infty}{s-\lim _{n}} \frac{1}{n} \sum_{m=0}^{n-1} U^{m}\left(J\left[A_{0}, U_{0}\right] U_{0}^{-1} J^{*}\right) U^{-m} P_{\mathrm{c}}(U) \tag{!}\\
& =2 P_{\mathrm{c}}(U)
\end{align*}
$$

with $P_{\mathrm{c}}(U)$ the projection onto the continuous subspace of U.

Thus point (a) of the theorem implies that for each $\varphi=D \widetilde{\varphi} \in D \mathcal{D}(A)$ and $\psi \in \mathcal{D}(A)$ there is $c_{\varphi, \psi} \geq 0$ such that

$$
\left|\left\langle\varphi, U^{n} \psi\right\rangle_{\mathcal{H}}\right| \leq\left\|\left(D-D_{n}\right) \widetilde{\varphi}\right\|_{\mathcal{H}}\|\psi\|_{\mathcal{H}}+\frac{1}{n} c_{\varphi, \psi}, \quad n \geq 1
$$

Remark

One cannot easily improve this estimate, because its proof uses RAGE theorem, whose proof relies on a discrete version of Wiener's theorem, which doesn't come with an explicit rate of convergence.

Gracias !

References

- V. Georgescu, M. Larenas and A. Soffer. Abstract theory of pointwise decay with applications to wave and Schrödinger equations. Ann. Henri Poincaré, 2016
- S. Richard and R. Tiedra de Aldecoa. Commutator criteria for strong mixing II. More general and simpler. Cubo, 2019
- S. Richard and R. Tiedra de Aldecoa. Decay estimates for unitary representations with applications to continuous- and discrete-time models. Preprint on ArXiv, 2021
- R. Tiedra de Aldecoa. Commutator criteria for strong mixing. Ergodic Theory Dynam. Systems, 2017

