Degree, mixing, and absolutely continuous spectrum of cocycles with values in compact Lie groups

Rafael Tiedra de Aldecoa

Pontifical Catholic University of Chile

Marseille, October 2016

# Table of Contents

### Cocycles with values in compact Lie groups

- Degree of a cocycle
- Mixing
- Absolutely continuous spectrum

### Examples

- Cocycles with values in a torus
- Cocycles with values in U(2)

### 3 References

### Cocycles with values in compact Lie groups

- X, compact manifold with probability measure  $\mu_X$
- $\{F_t\}_{t\in\mathbb{R}}$ ,  $C^1$  measure-preserving flow on X with Lie derivative  $\mathscr{L}_Y$
- *G*, compact Lie group with Haar measure  $\mu_G$ , identity  $e_G$ , Lie algebra  $\mathfrak{g}$ , and Lie bracket  $[\cdot, \cdot]_{\mathfrak{g}} : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$

A measurable function  $\phi: X \to G$  induces a measurable cocycle over  $F_1$ 

$$X \times \mathbb{Z} \ni (x, n) \mapsto \phi^{(n)}(x) \in G$$

given by

$$\phi^{(n)}(x) := \begin{cases} \phi(x)(\phi \circ F_1)(x) \cdots (\phi \circ F_{n-1})(x) & \text{if } n \ge 1 \\ e_G & \text{if } n = 0 \\ (\phi^{(-n)} \circ F_n)(x)^{-1} & \text{if } n \le -1. \end{cases}$$

The skew product associated to  $\phi$  is the measure preserving map

$$T_{\phi}: X imes G o X imes G, \ \ (x,g) \mapsto ig(F_1(x), g \, \phi(x)ig),$$

with iterates

$$T^n_{\phi}(x,g) = \left(F_n(x), g \phi^{(n)}(x)\right), \quad n \in \mathbb{Z}.$$



The Koopman operator for  $T_{\phi}$  is the unitary operator

$$U_{\phi}\psi := \psi \circ T_{\phi}, \quad \psi \in \mathcal{H} := \mathsf{L}^{2}(X \times G, \mu_{X} \otimes \mu_{G}).$$

Peter-Weyl's theorem gives an orthogonal decomposition

$$\mathcal{H} = \bigoplus_{\pi \in \widehat{G}} \bigoplus_{j=1}^{d_{\pi}} \mathcal{H}_{j}^{(\pi)}, \quad \mathcal{H}_{j}^{(\pi)} := \bigoplus_{k=1}^{d_{\pi}} \mathsf{L}^{2}(X, \mu_{X}) \otimes \mathbb{C}\pi_{jk},$$

with  $\pi: G \to U(d_{\pi})$  the finite-dimensional irreducible unitary representations of G, and  $U_{\phi,\pi,j} := U_{\phi}|_{\mathcal{H}_{i}^{(\pi)}}$  the restriction given by

$$U_{\phi,\pi,j}\sum_{k=1}^{d_{\pi}}\varphi_k\otimes\pi_{jk}=\sum_{k,\ell=1}^{d_{\pi}}\big(\varphi_k\circ F_1\big)\big(\pi_{\ell k}\circ\phi\big)\otimes\pi_{j\ell},\quad\varphi_k\in\mathsf{L}^2(X,\mu_X).$$

#### Degree of a cocycle

# Degree of a cocycle

#### Definition (Degree of $\phi$ )

Assume that  $\phi \in C^1(X, G)$  and let  $M_\phi := \mathscr{L}_Y \phi \cdot \phi^{-1} \in C(X, \mathfrak{g})$ . Then, the degree of  $\phi$  is the function  $P_\phi M_\phi : X \to \mathfrak{g}$  given for  $\mu_X$ -almost every  $x \in X$  by

$$egin{aligned} & (P_{\phi}M_{\phi})(x) := \lim_{N o \infty} rac{1}{N} (\mathscr{L}_{Y}\phi^{(N)})(x) \cdot \phi^{(N)}(x)^{-1} \ & = \lim_{N o \infty} rac{1}{N} \sum_{n=0}^{N-1} \operatorname{Ad}_{\phi^{(n)}(x)} (M_{\phi} \circ F_{n})(x). \end{aligned}$$

von Neumann's ergodic theorem implies that  $P_{\phi} \in \mathscr{B}(L^2(X, \mathfrak{g}))$  is the orthogonal projection onto ker $(1 - W_{\phi})$  with  $W_{\phi}$  the unitary operator

$$ig(W_\phi fig)(x):=\operatorname{Ad}_{\phi(x)}(f\circ F_1)(x),\quad f\in \operatorname{L}^2(X,\mathfrak{g}),\ \mu_X ext{-almost every }x\in X.$$

The degree  $P_{\phi}M_{\phi}$  transforms in a natural way under Lie group homomorphisms and under the relation of  $C^1$ -cohomology.

Degree under homomorphisms.

If  $\phi = h \circ \delta$  with  $h : G' \to G$  a Lie group homomorphism and  $\delta \in C^1(X, G')$ , then

$$P_{\phi}M_{\phi} = (\mathrm{d}h)_{e_{G'}}((P_{\delta}M_{\delta})(\,\cdot\,))$$

with  $(dh)_{e_{G'}} : \mathfrak{g}' \to \mathfrak{g}$  the differential of h and  $\mathfrak{g}'$  the Lie algebra of G'.

#### Degree under $C^1$ -cohomology.

If  $\zeta, \delta \in C^1(X, G)$  are such that

$$\phi(x) = \zeta(x)^{-1} \,\delta(x) \,(\zeta \circ F_1)(x), \quad x \in X,$$

then  $P_{\delta}M_{\delta} = \operatorname{Ad}_{\zeta}(P_{\phi}M_{\phi}).$ 

 $\pi(G)$  is a Lie group with Lie algebra  $\mathfrak{g}_{\pi}$  and  $\pi: G \to \pi(G) \subset U(d_{\pi})$  is a Lie group homomorphism. So, we obtain

$$P_{\pi \circ \phi} M_{\pi \circ \phi} = (\mathrm{d}\pi)_{e_{\mathcal{G}}} \big( (P_{\phi} M_{\phi})(\,\cdot\,) \big),$$

and the function  $P_{\pi \circ \phi} M_{\pi \circ \phi} : X \to \mathfrak{g}_{\pi}$  is the degree of  $\pi \circ \phi$ .

The degree of  $\pi \circ \phi$  is the image of the degree of  $\phi$  under the differential (pushforward)  $(d\pi)_{e_G} : \mathfrak{g} \to \mathfrak{g}_{\pi}$ 



 $P_{\phi}M_{\phi}$  and  $P_{\pi\circ\phi}M_{\pi\circ\phi}$  take simple forms in two particular cases.

#### Lemma ( $F_1$ uniquely ergodic and $\pi \circ \phi$ diagonal)

Assume that  $\phi \in C^1(X, G)$ , that  $F_1$  is uniquely ergodic, and that  $\pi \circ \phi$  is diagonal for each  $\pi \in \widehat{G}$ . Then,

$$\lim_{N\to\infty}\left\|\frac{1}{N}\sum_{n=0}^{N-1}W_{\pi\circ\phi}^nM_{\pi\circ\phi}-(\mathrm{d}\pi)_{e_G}(M_{\phi,\star})\right\|_{\mathsf{L}^\infty(X,\mathscr{B}(\mathbb{C}^{d_\pi}))}=0,$$

with

$$M_{\phi,\star} := \int_X \mathrm{d}\mu_X(x) \, M_\phi(x).$$

Furthermore,  $P_{\phi}M_{\phi} = M_{\phi,\star}$ .

#### Lemma ( $T_{\phi}$ uniquely ergodic)

Assume that  $\phi \in C^1(X, G)$  and that  $T_{\phi}$  is uniquely ergodic. Then,

$$\lim_{N\to\infty}\left\|\frac{1}{N}\sum_{n=0}^{N-1}W_{\pi\circ\phi}^nM_{\pi\circ\phi}-(\mathrm{d}\pi)_{e_{\mathcal{G}}}(M_{\phi,\star})\right\|_{\mathsf{L}^{\infty}(X,\mathscr{B}(\mathbb{C}^{d_{\pi}}))}=0,$$

with

$$M_{\phi,\star} := \int_{X \times G} \mathrm{d}(\mu_X \otimes \mu_G)(x,g) \operatorname{Ad}_g M_\phi(x).$$

Furthermore,  $P_{\phi}M_{\phi} = M_{\phi,\star}$ .

#### Comment on the proofs.

The convergences in the L<sup> $\infty$ </sup>-norm follow from the unique ergodicity of  $F_1$ and  $T_{\phi}$ . In the first lemma,  $M_{\phi,\star}$  is simpler because  $\pi \circ \phi$  is diagonal, so that  $W^n_{\pi\circ\phi}M_{\pi\circ\phi} = M_{\pi\circ\phi}\circ F_n$ . In the case  $T_{\phi}$  uniquely ergodic and G connected, we have

$$\begin{split} M_{\phi,\star} &= \int_{X \times G} \mathrm{d}(\mu_X \otimes \mu_G)(x,g) \, \mathrm{Ad}_g \, M_{\phi}(x) \\ &= \int_G \mathrm{d}\mu_G(g) \, \mathrm{Ad}_g \left( \int_X \mathrm{d}\mu_X(x) \, M_{\phi}(x) \right) \\ &\in z(\mathfrak{g}), \end{split}$$

with

$$z(\mathfrak{g}) := ig\{ Z \in \mathfrak{g} \mid [X, Z]_\mathfrak{g} = 0 ext{ for all } X \in \mathfrak{g} ig\}$$

the center of  $\mathfrak{g}$ .

Connected semisimple groups G have trivial center  $z(\mathfrak{g}) = \{0\}$ . Thus, there is no uniquely ergodic  $T_{\phi}$  with nonzero degree if G is connected and semisimple (for example G = SU(n) or  $G = SO(n + 1, \mathbb{R})$  with  $n \ge 2$ ).

# Mixing

By applying an abstract commutator criterion for mixing, we get:

Theorem (Mixing property of  $U_{\phi,\pi,j}$ )

Assume that  $\phi \in C^1(X, G)$ . Then, the degree exists and is equal to  $D_{\phi,\pi} = i(\mathrm{d}\pi)_{e_G}((P_{\phi}M_{\phi})(\cdot))$ , and (a)  $\lim_{N\to\infty} \langle \varphi, (U_{\phi,\pi,j})^N \psi \rangle = 0$  for each  $\varphi \in \ker(D_{\phi,\pi})^{\perp}$  and  $\psi \in \mathcal{H}_j^{(\pi)}$ , (b)  $U_{\phi,\pi,j}|_{\ker(D_{\phi,\pi})^{\perp}}$  has purely continuous spectrum.

Summing up the results for each  $\pi$ , one gets that  $U_{\phi}$  is mixing in the subspace

$$\mathcal{H}_{\mathsf{mix}} := igoplus_{\pi \in \widehat{G}} igoplus_{j=1}^{d_{\pi}} \mathsf{ker}(D_{\phi,\pi})^{\perp} \subset \mathcal{H}.$$

If  $F_1$  uniquely ergodic and  $\pi \circ \phi$  diagonal, or if  $T_{\phi}$  is uniquely ergodic, the theorem simplifies to:

#### Corollary

Assume that  $\phi \in C^1(X, G)$  and suppose that  $F_1$  is uniquely ergodic and  $\pi \circ \phi$  diagonal, or that  $T_{\phi}$  is uniquely ergodic. Then, the degree exists and is equal to  $D_{\phi,\pi} = i(d\pi)_{e_c}(M_{\phi,\star})$ , and (a)  $\lim_{N\to\infty} \langle \varphi, (U_{\phi,\pi,i})^N \psi \rangle = 0$  for each  $\varphi \in \ker(D_{\phi,\pi})^{\perp}$  and  $\psi \in \mathcal{H}_i^{(\pi)}$ , (b)  $U_{\phi,\pi,j}|_{\ker(D_{\phi,\pi})^{\perp}}$  has purely continuous spectrum.

In this case,  $D_{\phi,\pi}$  is the multiplication operator by the constant matrix  $i(d\pi)_{e_{c}}(M_{\phi,\star})$ . Thus, ker $(D_{\phi,\pi})^{\perp}$  is easy to compute.

# Absolutely continuous spectrum

Let

$$a_{\phi,\pi} := \operatorname*{ess\,inf}_{x \in \mathcal{X}} \inf_{v \in \mathbb{C}^{d_{\pi}}, \|v\|_{\mathbb{C}^{d_{\pi}}} = 1} \left\langle v, \left(i(\mathrm{d}\pi)_{e_{\mathcal{G}}}\left((P_{\phi}M_{\phi})(x)\right)\right)^{2}v\right\rangle_{\mathbb{C}^{d_{\pi}}}$$

By applying an abstract commutator criterion for absolutely continuous spectrum, we get:

### Theorem (Absolutely continuous spectrum of $U_{\phi,\pi,j})$

Assume that

(i) 
$$\phi \in C^1(X, G)$$
 + some more regularity,

(ii) 
$$\lim_{N\to\infty} \left\| \frac{1}{N} \sum_{n=0}^{N-1} W_{\pi\circ\phi}^n M_{\pi\circ\phi} - (\mathrm{d}\pi)_{e_G} \left( (P_{\phi}M_{\phi})(\cdot) \right) \right\|_{\mathsf{L}^{\infty}(X,\mathscr{B}(\mathbb{C}^{d_{\pi}}))} = 0,$$

(III)  $a_{\phi,\pi} > 0.$ 

Then,  $U_{\phi,\pi,j}$  has purely absolutely continuous spectrum.

٠

Summing up the results for each  $\pi$ , one gets that  $U_{\phi}$  has purely absolutely continuous spectrum in a subspace

 $\mathcal{H}_{\mathsf{ac}} \subset \mathcal{H}_{\mathsf{mix}} \subset \mathcal{H}.$ 

If  $F_1$  uniquely ergodic and  $\pi \circ \phi$  diagonal, or if  $T_{\phi}$  is uniquely ergodic, the theorem simplifies to:

#### Corollary

#### Assume that

(i) 
$$\phi \in C^1(X, G)$$
 + some more regularity,

(ii)  $F_1$  is uniquely ergodic and  $\pi \circ \phi$  diagonal, or  $T_{\phi}$  is uniquely ergodic, (iii) det  $((d\pi)_{e_G}(M_{\phi,\star})) \neq 0$ .

Then,  $U_{\phi,\pi,j}$  has purely absolutely continuous spectrum.

In summary, in each subspace  $\mathcal{H}_{j}^{(\pi)}$  we use commutator methods to determine the spectral properties of  $U_{\phi,\pi,j} = U_{\phi}|_{\mathcal{H}_{j}^{(\pi)}}$ .

| [                         |                           |                           |                           |
|---------------------------|---------------------------|---------------------------|---------------------------|
| $\mathcal{H}_1^{(\pi_4)}$ | $\mathcal{H}_2^{(\pi_4)}$ | $\mathcal{H}_3^{(\pi_4)}$ | $\mathcal{H}_4^{(\pi_4)}$ |
| $\mathcal{H}_1^{(\pi_3)}$ | $\mathcal{H}_2^{(\pi_3)}$ | $\mathcal{H}_3^{(\pi_3)}$ | $\mathcal{H}_4^{(\pi_3)}$ |
| $\mathcal{H}_1^{(\pi_2)}$ | $\mathcal{H}_2^{(\pi_2)}$ | $\mathcal{H}_3^{(\pi_2)}$ | $\mathcal{H}_4^{(\pi_2)}$ |
| $\mathcal{H}_1^{(\pi_1)}$ | $\mathcal{H}_2^{(\pi_1)}$ | $\mathcal{H}_3^{(\pi_1)}$ | $\mathcal{H}_4^{(\pi_1)}$ |

## Cocycles with values in a torus



Assume that  $G = \mathbb{T}^d := (\mathbb{S}^1)^d$   $(d \in \mathbb{N}^*)$ . Then,  $\mathfrak{g} = i \mathbb{R}^d$ , each  $\pi^{(q)} \in \widehat{\mathbb{T}^d}$  is a character of  $\mathbb{T}^d$  given by

$$\pi^{(q)}(z):=z_1^{q_1}\cdots z_d^{q_d},\quad z=(z_1,\ldots,z_d)\in\mathbb{T}^d,\,\,q=(q_1,\ldots,q_d)\in\mathbb{Z}^d,$$

and

$$\mathcal{H}^{(q)} := \mathcal{H}_1^{(\pi^{(q)})} = \mathsf{L}^2(X, \mu_X) \otimes \mathbb{C}\pi^{(q)}.$$

If  $\phi \in C^1(X, \mathbb{T}^d)$ , then  $D_{\phi,q} := D_{\phi,\pi^{(q)}} = i(\mathrm{d}\pi^{(q)})_e((P_\phi M_\phi)(\cdot))$ with  $e = e_{\mathbb{T}^d} = (1, \dots, 1)$ , and  $U_\phi$  is mixing in the subspace

$$\mathcal{H}_{\mathsf{mix}} := igoplus_{q \in \mathbb{Z}^d} \ker(D_{\phi,q})^\perp \subset \mathcal{H}.$$

To say more on  $U_{\phi}$ , we further assume that  $F_1$  is uniquely ergodic and an additional regularity assumption of Dini-type on  $\mathscr{L}_Y(\pi^{(q)} \circ \phi)$ .

The unique ergodicity of  $F_1$  implies that

$$D_{\phi,q} = i (\mathrm{d}\pi^{(q)})_e(M_{\phi,\star}) \in \mathbb{R}$$

with

$$M_{\phi,\star} = \int_X \mathrm{d}\mu_X(x) \, M_\phi(x) \in i \, \mathbb{R}^d.$$

The last assumption of the corollary det  $((d\pi)_{e_G}(M_{\phi,\star})) \neq 0$  is equivalent to  $D_{\phi,q} \neq 0$ . Thus, we obtain that  $U_{\phi}$  has purely absolutely continuous spectrum in the subspace

$$\mathcal{H}_{\mathsf{ac}} := igoplus_{q \in \mathbb{Z}^d, \ D_{\phi,q} 
eq 0} \mathcal{H}^{(q)} \subset \mathcal{H}_{\mathsf{mix}}.$$

#### Example

If 
$$X = G = \mathbb{T}$$
,  $\phi(x) = x^m$   $(m \in \mathbb{Z})$ , and

$$\mathsf{F}_t(x) := x \, \mathrm{e}^{2\pi i t lpha}, \quad t \in \mathbb{R}, \; x \in \mathbb{T}, \; lpha \in \mathbb{R} \setminus \mathbb{Q}$$

then  $\phi \in C^{\infty}(\mathbb{T}, \mathbb{T})$ ,  $F_1$  is uniquely ergodic (irrational rotation), the degree of  $\phi$  is

$$\begin{split} M_{\phi,\star} &= \int_{\mathbb{T}} \mathrm{d}\mu_{\mathbb{T}}(x) \, M_{\phi}(x) \\ &= \int_{\mathbb{T}} \mathrm{d}\mu_{\mathbb{T}}(x) \, \left( \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} \phi \left( x \, \mathrm{e}^{2\pi i t \alpha} \right) \right) \phi(x)^{-1} \\ &= \int_{\mathbb{T}} \mathrm{d}\mu_{\mathbb{T}}(x) \, \left( \frac{\mathrm{d}}{\mathrm{d}t} \Big|_{t=0} x^{m} \, \mathrm{e}^{2m \pi i t \alpha} \right) x^{-m} \\ &= 2m \pi i \alpha, \end{split}$$

#### Example (continued)

and the degree of  $\pi^{(q)} \circ \phi$  is

$$\left(\mathrm{d}\pi^{(q)}\right)_{e}(M_{\phi,\star}) = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0}\pi^{(q)}\left(\mathrm{e}^{tM_{\phi,\star}}\right) = 2mq\pi i\alpha.$$

Therefore, if  $m \neq 0$ , we obtain that  $U_{\phi}$  has purely absolutely continuous spectrum in the subspace

$$\begin{aligned} \mathcal{H}_{\mathsf{ac}} &= \bigoplus_{q \in \mathbb{Z} \setminus \{0\}} \mathcal{H}^{(q)} \\ &= \bigoplus_{q \in \mathbb{Z} \setminus \{0\}} \mathsf{L}^2(X, \mu_X) \otimes \mathbb{C}\pi^{(q)} \\ &= \begin{cases} \text{ orthocomplement of the functions} \\ \text{depending only on the first variable} \end{cases} \end{aligned}$$

# Cocycles with values in U(2)

Assume that

$$\begin{split} \mathcal{G} &= \mathsf{U}(2) = \left\{ \begin{pmatrix} z_1 & z_2 \\ -\operatorname{e}^{i\theta}\overline{z_2} & \operatorname{e}^{i\theta}\overline{z_1} \end{pmatrix} \mid \theta \in [0, 2\pi), \ z_1, z_2 \in \mathbb{C}, \ |z_1|^2 + |z_2|^2 = 1 \right\}, \\ \mathfrak{g} &= \mathfrak{u}(2) = \left\{ \begin{pmatrix} is_1 & z \\ -\overline{z} & is_2 \end{pmatrix} \mid s_1, s_2 \in \mathbb{R}, \ z \in \mathbb{C} \right\}. \end{split}$$

Using the representation theory for SU(2) and the epimorphism

$$\mathbb{T} imes \mathsf{SU}(2)
i (z,g)\mapsto zg\in \mathsf{U}(2),$$

we can determine all the representations  $\pi^{(\ell,m)}$  of U(2),

$$\pi^{(\ell,m)}: \mathsf{U}(2) \to \mathsf{U}(\ell+1), \quad \ell \in \mathbb{N}, \ m \in \mathbb{Z}.$$

If  $\phi \in C^1(X; U(2))$ , then

$$D_{\phi,\ell,m} := D_{\phi,\pi^{(\ell,m)}} = i \big( \mathrm{d}\pi^{(\ell,m)} \big)_{I_2} \big( (P_{\phi} M_{\phi})(\,\cdot\,) \big)$$

with  $I_2 := \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = e_{U(2)}$ , and  $U_{\phi}$  is mixing in the subspace

$$igoplus_{m\in\mathbb{Z}}igoplus_{\ell\in\mathbb{N}}igoplus_{j\in\{0,...,\ell\}} \mathsf{ker}(D_{\phi,\ell,m})^\perp\subset\mathcal{H}.$$

To say more on  $U_{\phi}$ , we further assume that  $T_{\phi}$  is uniquely ergodic. In this case, we have  $D_{\phi,\ell,m} = i (d\pi^{(\ell,m)})_{I_0}(M_{\phi,\star})$  with

$$M_{\phi,\star} \in z(\mathfrak{u}(2)) = \{isI_2 \mid s \in \mathbb{R}\}.$$

Therefore,  $M_{\phi,\star} = i s_{\phi} l_2$  for some  $s_{\phi} \in \mathbb{R}$ .

Using an explicit formula for  $\pi^{(\ell,m)}$ , we obtain

$$i(\mathrm{d}\pi^{(\ell,m)})_{l_2}(M_{\phi,\star})_{j,k} = -s_{\phi}(2m-\ell)j!(\ell-j)!\delta_{j,k}, \quad j,k\in\{0,\ldots,\ell\}.$$

(constant diagonal matrix)

Thus, if  $s_{\phi} \neq 0$ ,  $U_{\phi}$  is mixing in the subspace

$$\mathcal{H}_{\mathsf{mix}} := igoplus_{m \in \mathbb{Z}} igoplus_{\ell \in \mathbb{N} \setminus \{2m\}} igoplus_{j \in \{0,...,\ell\}} \mathcal{H}_{j}^{(\pi^{(\ell,m)})} \subset \mathcal{H}.$$

Under an additional regularity assumption of Dini-type on  $\mathscr{L}_{Y}(\pi^{(\ell,m)} \circ \phi)$ , we obtain that  $U_{\phi}$  has purely absolutely continuous spectrum in  $\mathcal{H}_{mix}$ .

#### Example

Using the isomorphism

$$\mathsf{SO}(3,\mathbb{R}) imes \mathbb{T} \simeq \mathsf{U}(2)$$

and results of Eliasson and Hou on skew products on  $\mathbb{T}^d \times SO(3, \mathbb{R})$ , we can produce skew-products  $T_{\phi}$  on  $\mathbb{T}^d \times U(2)$  satisfying our assumptions.

Namely, skew-products  $T_{\phi}$  with  $\phi \in C^{\infty}(\mathbb{T}^d; U(2))$ ,  $T_{\phi}$  uniquely ergodic, and nonzero degree  $M_{\phi,\star} = is_{\phi}I_2$ .

# Thank you !

### References

- $\bullet\,$  K. Frączek. On cocycles with values in the group  ${\rm SU}(2).$  Monatsh. Math., 2000
- N. Karaliolios. Global aspects of the reducibility of quasiperiodic cocycles in semisimple compact Lie groups. PhD thesis, 2013
- R. Tiedra de Aldecoa. Degree, mixing, and absolutely continuous spectrum of cocycles with values in compact Lie groups. preprint on arXiv
- R. Tiedra de Aldecoa. The absolute continuous spectrum of skew products of compact Lie groups. Israel J. Math., 2015