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Cocycles with values in compact Lie groups

Cocycles with values in compact Lie groups

e X, compact manifold with probability measure px
o {F.}tcr, C' measure-preserving flow on X with Lie derivative %y

e G, compact Lie group with Haar measure g, identity eg, Lie algebra
g, and Lie bracket [-,-]g:gxg—g
A measurable function ¢ : X — G induces a measurable cocycle over F;
XxZ>(x,n)— ¢M(x)eG

given by

o(x)(po F1)(x) - (poFp1)(x) ifn>1
¢("(x) = ec if n=0
(¢C=m o Fp)(x)7? if n < —1.



Cocycles with values in compact Lie groups

The skew product associated to ¢ is the measure preserving map
Ts: X xG—=Xx%xG, (x,8) (Fi(x),gd(x)),

with iterates
TJ(x,8) = (Fa(x),g¢"(x)), neZ.




Cocycles with values in compact Lie groups

The Koopman operator for Ty is the unitary operator
Usth i=1ho Ty, P EH :=L*XxG,ux ® pg).
Peter-Weyl's theorem gives an orthogonal decomposition
gy H =
He@ DD, ) = Pk o O
reC Jj=1 k=1

with 7 : G — U(d;) the finite-dimensional irreducible unitary
representations of G, and Uy := U¢‘H<7’) the restriction given by
i

dr dr

(%mJ§:¢k®FM= E:(kaH)ﬁMO¢)®ﬂﬂa ok € L2(X, pix).

k=1 k=1
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Cocycles with values in compact Lie groups Degree of a cocycle
Degree of a cocycle

Definition (Degree of ¢)

Assume that ¢ € C}(X, G) and let My, := %y ¢- ¢~ € C(X,g). Then,
the degree of ¢ is the function P,M, : X — g given for px-almost every
x € X by

von Neumann’s ergodic theorem implies that Py € ,%(L2(X,g)) is the
orthogonal projection onto ker(1 — W,) with W, the unitary operator

(Wif)(x) := Ady(x)(f o F1)(x), f € L?(X,g), px-almost every x € X.
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Cocycles with values in compact Lie groups Degree of a cocycle

The degree P,My transforms in a natural way under Lie group
homomorphisms and under the relation of C!-cohomology.

Degree under homomorphisms.

If)="hod with h: G' — G a Lie group homomorphism and
§ € CY(X, G), then

PyMy = (dh)e,, ((PsMs)(-))

with (dh)e,, : g — g the differential of h and ¢’ the Lie algebra of G'.

Degree under C!-cohomology.
If¢,6 € CL(X, G) are such that

¢(x) = C(x)"1o(x) (Co A)(x), x€EX,
then PsMs = Adc(P¢M¢)

~
N
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Cocycles with values in compact Lie groups Degree of a cocycle

7(G) is a Lie group with Lie algebra g, and 7: G — 7(G) C U(dy) is a
Lie group homomorphism. So, we obtain

P7TO¢M7TO¢ = (dﬂ-)ec ((P¢M¢)())a

and the function Pros Moy 1 X — gr is the degree of mo ¢.

The degree of mo ¢ is the image of the degree of ¢ under the
differential (pushforward) (dm)e, 1 g — gr

(d7)eg

exp

D¢«
[¢]
X
©



Cocycles with values in compact Lie groups Degree of a cocycle

PyMy and ProyM;yos take simple forms in two particular cases.

Lemma (F; uniquely ergodic and 7 o ¢ diagonal)

Assume that ¢ € Cl(XA7 G), that Fy is uniquely ergodic, and that wo ¢ is
diagonal for each w € G. Then,

lim
N—oo

N-1

1

N D WosMrog — (dm)eg (M)
n=0 Lo (X, #(C))

with
Mo i= [ dpx(o) M),
X

Furthermore, PyMy = My ,.




Cocycles with values in compact Lie groups Degree of a cocycle

Lemma (T, uniquely ergodic)
Assume that ¢ € C1(X, G) and that T, is uniquely ergodic. Then,

=0,
Loo(X,B(Cr))

lim
N—oo

N-1

1

N D WosMrog — (dm)eg (M 1)
—o

with
M., = / d(jix ® 16)(x, £) AdgMys(x).
XxG

Furthermore, PyMy = M, ...

Comment on the proofs.
The convergences in the L°°-norm follow from the unique ergodicity of f;
and Ty. In the first lemma, My , is simpler because 7 o ¢ is diagonal, so

that Wi, ,Mrogp = Mrog o Fi. n
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Cocycles with values in compact Lie groups Degree of a cocycle

In the case T4 uniquely ergodic and G connected, we have

Mo = [ dlux @ pc)(x. ) Adg My(x)

— [ aucte) ady ( [ it M)
€ z(g),

with
z(g):={Z€g|[X,Z];=0forall X € g}

the center of g.

Connected semisimple groups G have trivial center z(g) = {0}. Thus,
there is no uniquely ergodic T, with nonzero degree if G is connected and
semisimple (for example G = SU(n) or G = SO(n + 1,R) with n > 2).
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Mixing
By applying an abstract commutator criterion for mixing, we get:

Theorem (Mixing property of Uy . ;)

Assume that ¢ € C1(X, G). Then, the degree exists and is equal to
Dy, = i(dm)eg ((PsMy)(+)), and

(@) iMoo (05 (Ugrj) sz> =0 for each ¢ € ker(Dy )" and ¢ € HJ(-W),

(b) U¢7“J‘ker(D¢ )L has purely continuous spectrum.

Summing up the results for each 7, one gets that Uy is mixing in the
subspace

dr
Hemix := @ EB ker(DWr)l CH.

reG J=1



Cocycles with values in compact Lie groups Mixing

If F1 uniquely ergodic and 7 o ¢ diagonal, or if Ty is uniquely ergodic, the
theorem simplifies to:

Corollary

Assume that ¢ € C1(X, G) and suppose that Fy is uniquely ergodic and

7 o ¢ diagonal, or that Ty is uniquely ergodic. Then, the degree exists and
is equal to Dy » = i(dm)ec(Mgpx), and

(a) limy_oo <gp, (Ude) qu> = 0 for each ¢ € ker(DWT)L and vy € ’HJ(-TF),

(b) U¢77ij’ker(D¢ )L has purely continuous spectrum.

In this case, Dy  is the multiplication operator by the constant matrix
i(d7)ec (My4). Thus, ker(Dy )t is easy to compute.
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Cocycles with values in compact Lie groups RS AT ITTT R o T=adqT]y)]

Absolutely continuous spectrum

Let

agr = essinf inf <v, (i(dT)eg ((P¢M¢)(X)))2V>

XEX Ve, |[v]|a, =1 Cén

By applying an abstract commutator criterion for absolutely continuous
spectrum, we get:

Theorem (Absolutely continuous spectrum of Uy ;)

Assume that
(i) ¢ € C1(X, G) + some more regularity,

(if)  lim HN Yoo WMo — (d7)eq ((PsMy) () (Do, (comy) = O
(iii) agx > 0.

Then, Uy - ; has purely absolutely continuous spectrum.
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Cocycles with values in compact Lie groups RS AT ITTT R o T=adqT]y)]

Summing up the results for each 7, one gets that Uy, has purely absolutely
continuous spectrum in a subspace

Hac (@ Hm|x C H.

If F1 uniquely ergodic and 7 o ¢ diagonal, or if Ty is uniquely ergodic, the
theorem simplifies to:

Corollary
Assume that

(i) ¢ € CHX, G) + some more regularity,
(ii) Fy is uniquely ergodic and w o ¢ diagonal, or Ty is uniquely ergodic,
(i) det ((dm)eq(Ms)) #0.

Then, Uy . ; has purely absolutely continuous spectrum.
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Cocycles with values in compact Lie groups Absolutely continuous spectrum

(m)

In summary, in each subspace H we use commutator methods to

determine the spectral propertles of Uprj= U¢‘H(w

,Hgm) ,Hgm) ,H:())m) ,Hgm,)

H§7T3) H(7T3) H("TE») H[(;T3)

ngﬂ'z) Hgﬁz) %gﬂz) rH(Wz)

’Hgﬂl) Hgﬂl) %g’”) Hf{”)




SEESE  Cocycles with values in a torus

Cocycles with values in a torus

Assume that G = T? := (S1)? (d € N*). Then, g = iR?, each 7(9) ¢ Td
is a character of T given by

ﬂ(q)(Z) =zl ez, z=(21,...,24) € T, qg=(q1,...,qq) € Z9,

#(@) = Hg’r(q)) = L%(X, pux) ® Cx9,
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SEESE  Cocycles with values in a torus

If € C}(X,T9), then
Dy g := Dy nia) = i(drn D) _((PsMy)(+))

with e = eqs = (1,...,1), and Uy is mixing in the subspace

Homix = @ ker(D(M)J‘ CH.

qezd

To say more on Uy, we further assume that F; is uniquely ergodic and an
additional regularity assumption of Dini-type on fy(w(q) 0 ).
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SEESE  Cocycles with values in a torus

The unique ergodicity of F; implies that
Dyq = i(dn'?)_(M,,) € R
with

I\/I¢7*:/ dpux(x) My(x) € iR,
X

The last assumption of the corollary det ((dm)e,(Mg.)) # 0 is equivalent
to Dy.q # 0. Thus, we obtain that Uy has purely absolutely continuous
spectrum in the subspace

Hac :== @ H(q) C Hmix-

qEZd, D¢’q§£0
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Example

IfX=G=T, ¢(x) =x" (m e Z), and
F:(x) = xemte teR, xeT, aeR\Q,

then ¢ € C>(T,T), F1 is uniquely ergodic (irrational rotation), the degree
of ¢ is

My, — /T dpr(x) My(x)
_ /T dprr(x) <§t’t:o¢(’<ezm)) 8(x)L
= /T dpr(x) <§t X e2"”“'fa) X

=2mmic,

t=0
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SEESE  Cocycles with values in a torus

Example (continued)

and the degree of 7@ o ¢ is

(dﬁ(q))e(M(z)’*) — i

dt‘t:O w(q)(etM¢v* ) = 2mgqria.

Therefore, if m # 0, we obtain that Uy has purely absolutely continuous
spectrum in the subspace

Hoe = @ 74(q)
qe€Z\{0}
= P (X, ux)®Cxl
qeZ\{0}
_ { orthocomplement of the functions }
depending only on the first variable | °




Cocycles with values in U(2)

Assume that

G=U(2) = {< Z,}, ,9> |6 €[0,27), z1,20 € C, yzly2+yzzy2:1},

evZzy e

g:u(2):{<l_slz IS> ‘51,S2€R ZEC}

Using the representation theory for SU(2) and the epimorphism
T x SU(2) > (z,g) — zg € U(2),
we can determine all the representations 7(“™ of U(2),

76m - y@2) - U(l+1), (eN, meZ

22/27



If ¢ € C1(X;U(2)), then
D¢’g7m = Dd’ﬂf(é’m) = i(dﬂ(z’m))lz ((P¢M¢)())

with b := (§9) = ey(z), and Uy is mixing in the subspace

@ @ @ ker(Dg.o.m)" C H.

meZ LeN je{0,...,L}

To say more on Uy, we further assume that T is uniquely ergodic. In this
case, we have Dy g m = "(dw(é’m))/z(/\/’@*) with

My € z(u(2)) = {ish | s € R}.

Therefore, My, = isyl> for some s; € R.
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Using an explicit formula for 7(4™) we obtain
i(dr“™), (Mg )jk = —so(2m = 0)j1(0 = ) 6jk,  Jrk €40, ¢},

(constant diagonal matrix)

Thus, if s4 # 0, Uy is mixing in the subspace

Ho=@ @ P #"Mcn

meZ ¢eN\{2m} je{0,....0}

Under an additional regularity assumption of Dini-type on .Zy(w(évm) o ),
we obtain that Uy has purely absolutely continuous spectrum in Hpyix.
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Example

Using the isomorphism
SO(3,R) x T ~ U(2)

and results of Eliasson and Hou on skew products on T9 x SO(3,R), we
can produce skew-products T, on T9 x U(2) satisfying our assumptions.

Namely, skew-products T, with ¢ € C* (']I‘d; U(2)), Ty uniquely ergodic,
and nonzero degree My , = isy .
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Examples

Thank you !
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