Degree, mixing, and absolutely continuous spectrum of cocycles with values in compact Lie groups

Rafael Tiedra de Aldecoa

Pontifical Catholic University of Chile

Santiago, June 2016

Table of Contents

- Commutator methods for unitary operators
- Cocycles with values in compact Lie groups
 - Degree of a cocycle
 - Mixing
 - Absolutely continuous spectrum
- Examples
 - Cocycles with values in a torus
 - Cocycles with values in U(2)
- 4 References

Commutator methods for unitary operators

- \mathcal{H} , Hilbert space with norm $\|\cdot\|$ and scalar product $\langle\cdot,\cdot\rangle$
- $\mathscr{B}(\mathcal{H})$, bounded operators on \mathcal{H}
- $\mathscr{K}(\mathcal{H})$, compact operators on \mathcal{H}
- A, self-adjoint operator in \mathcal{H} with domain $\mathcal{D}(A)$

Definition

 $S \in \mathscr{B}(\mathcal{H})$ satisfies $S \in C^{+0}(A)$ if

$$\int_0^1 \frac{\mathrm{d}t}{t} \left\| e^{-itA} S e^{itA} - S \right\| < \infty.$$

(Dini-type regularity along the "flow" of A)

Definition

 $S \in \mathscr{B}(\mathcal{H})$ satisfies $S \in C^k(A)$ if

$$\mathbb{R}\ni t\mapsto \mathrm{e}^{-itA}\,\mathcal{S}\,\mathrm{e}^{itA}\in\mathscr{B}(\mathcal{H})$$

is strongly of class C^k .

 $S \in C^1(A)$ if and only if

$$\left| \left\langle A\varphi, S\varphi \right\rangle - \left\langle \varphi, SA\varphi \right\rangle \right| \leq \mathsf{Const.} \, \|\varphi\|^2 \quad \text{for all } \varphi \in \mathcal{D}(A).$$

The bounded operator associated to the continuous extension of the quadratic form is denoted by [S, A], and

$$[iS, A] = s - \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0} \mathrm{e}^{-itA} S \, \mathrm{e}^{itA} \in \mathscr{B}(\mathcal{H}).$$

Definition

$$S \in \mathscr{B}(\mathcal{H})$$
 satisfies $S \in C^{1+0}(A)$ if $S \in C^1(A)$ and $[A, S] \in C^{+0}(A)$.

We have the inclusions

$$C^2(A) \subset C^{1+0}(A) \subset C^1(A) \subset C^{+0}(A) \subset C^0(A) = \mathscr{B}(\mathcal{H}).$$

Theorem (Fernández-Richard-T. 2013)

Let U be a unitary operator in $\mathcal H$ and let A be a self-adjoint operator in $\mathcal H$ with $U\in C^{1+0}(A)$. Suppose there is an open set $\Theta\subset \mathbb S^1$, a number a>0, and $K\in \mathcal K(\mathcal H)$ such that

$$E^{U}(\Theta)U^{-1}[A, U]E^{U}(\Theta) \ge aE^{U}(\Theta) + K.$$
 (**)

Then, U has at most finitely many eigenvalues in Θ (multiplicities counted), and U has no singular continuous spectrum in Θ .

- The inequality (\bigstar) is called a Mourre estimate for U on Θ .
- The operator A is called a conjugate operator for U on Θ .
- If K = 0, U has purely absolutely continuous spectrum in $\Theta \cap \sigma(U)$.

Criterion for the mixing property of U:

Theorem (T. 2015, Richard-T. 2016)

Let U be a unitary operator in $\mathcal H$ and let A be a self-adjoint operator in $\mathcal H$ with $U\in C^1(A)$. Assume that

$$D := \underset{N \to \infty}{\operatorname{s-lim}} \frac{1}{N} [A, U^N] U^{-N}$$

exists. Then,

- (a) $\lim_{N\to\infty} \langle \varphi, U^N \psi \rangle = 0$ for each $\varphi \in \ker(D)^{\perp}$ and $\psi \in \mathcal{H}$,
- (b) $U|_{\ker(D)^{\perp}}$ has purely continuous spectrum.
 - D is bounded and self-adjoint because it is the strong limit of bounded self-adjoint operators.
 - $DU^n = U^nD$ for each $n \in \mathbb{Z}$.
 - Point (b) is a simple consequence of point (a).

Let's determine conditions under which U has purely absolutely continuous spectrum in $\ker(D)^{\perp}$.

If $D \in C^1(A)$, the operators

$$A_D := AD + DA$$
 and $A_{D,N} := \frac{1}{N} \sum_{n=0}^{N-1} U^n A_D U^{-n}, \quad N \in \mathbb{N}^*,$

are essentially self-adjoint on $\mathcal{D}(A)$, and we have:

Proposition (Mourre estimate)

Let U be a unitary operator in $\mathcal H$ and let A be a self-adjoint operator in $\mathcal H$ with $U\in C^1(A)$. Assume that $D=\text{u-lim}_{N\to\infty}\frac1N[A,U^N]U^{-N}$ exists and satisfies $D\in C^1(A)$. Then, for each $\varepsilon>0$ there exists $N_\varepsilon\in\mathbb N^*$ such that

$$U^{-1}[A_{D,N},U] \ge 2D^2 - \varepsilon$$
 for $N \ge N_{\varepsilon}$.

Idea of the proof.

Using the relation [D, U] = 0, we get

$$[A_{D,N}, U] = \frac{1}{N} \sum_{n=0}^{N-1} U^n [AD + DA, U] U^{-n}$$
$$= \frac{1}{N} \sum_{n=0}^{N-1} U^n ([A, U]D + D[A, U]) U^{-n}.$$

Thus, if we set

$$D_N := \frac{1}{N} [A, U^N] U^{-N} = \frac{1}{N} \sum_{n=0}^{N-1} U^n ([A, U] U^{-1}) U^{-n},$$

Idea of the proof (continued).

we obtain

$$U^{-1}[A_{D,N}, U] = U^{-1} \left(\frac{1}{N} \sum_{n=0}^{N-1} U^n ([A, U] U^{-1} D + D[A, U] U^{-1}) U^{-n} \right) U$$

$$= U^{-1} (D_N D + D D_N) U$$

$$= 2D^2 + U^{-1} ((D_N - D) D + D (D_N - D)) U.$$

With what precedes, we obtain a criterion for the absolute continuity of U in $\ker(D)^{\perp}$:

Theorem (Absolutely continuous spectrum)

Let U be a unitary operator in $\mathcal H$ and let A be a self-adjoint operator in $\mathcal H$ with $U\in C^1(A)$. Assume that $D=\text{u-lim}_{N\to\infty}\frac{1}{N}\big[A,U^N\big]U^{-N}$ exists, that $D\in C^1(A)$, that $[A,U]\in C^{+0}(A_D)$, and that

$$D^2 E^U(\Theta) \ge c_{\Theta} E^U(\Theta)$$
 for some open set $\Theta \subset \mathbb{S}^1$ and $c_{\Theta} > 0$.

Then, U has purely absolutely continuous spectrum in $\Theta \cap \sigma(U)$.

- The conditions $U \in C^1(A)$ and $[A, U] \in C^{+0}(A_D)$ imply the regularity condition $U \in C^{1+0}(A_{D,N})$.
- The theorem gives a result in $\ker(D)^{\perp}$ because $D^2 = D = 0$ on $\ker(D)$.

Summing up, we have

and

$$(\bigstar)$$
 + additional regularity conditions + positivity assumption $\begin{tabular}{c} \begin{tabular}{c} \be$

Cocycles with values in compact Lie groups

- ullet X, compact manifold with probability measure μ_X
- ullet $\{F_t\}_{t\in\mathbb{R}},\ C^1$ measure-preserving flow on X with Lie derivative \mathscr{L}_Y
- G, compact Lie group with Haar measure μ_G , identity e_G , Lie algebra \mathfrak{g} , and Lie bracket $[\cdot,\cdot]_{\mathfrak{g}}:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{g}$

A measurable function $\phi:X o G$ induces a measurable cocycle over F_1

$$X \times \mathbb{Z} \ni (x, n) \mapsto \phi^{(n)}(x) \in G$$

given by

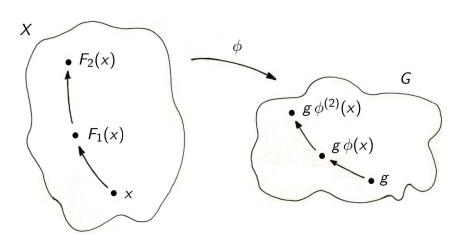
$$\phi^{(n)}(x) := \begin{cases} \phi(x)(\phi \circ F_1)(x) \cdots (\phi \circ F_{n-1})(x) & \text{if } n \ge 1 \\ e_G & \text{if } n = 0 \\ (\phi^{(-n)} \circ F_n)(x)^{-1} & \text{if } n \le -1. \end{cases}$$

The skew product associated to ϕ is the measure preserving map

$$T_{\phi}: X \times G \to X \times G, \quad (x,g) \mapsto (F_1(x), g \phi(x)),$$

with iterates

$$T_{\phi}^{n}(x,g) = (F_{n}(x), g\phi^{(n)}(x)), \quad n \in \mathbb{Z}.$$



The Koopman operator for T_{ϕ} is the unitary operator

$$U_{\phi} \psi := \psi \circ T_{\phi}, \quad \psi \in \mathcal{H} := L^{2}(X \times G, \mu_{X} \otimes \mu_{G}).$$

Peter-Weyl's theorem gives an orthogonal decomposition

$$\mathcal{H} = \bigoplus_{\pi \in \widehat{G}} \bigoplus_{j=1}^{d_{\pi}} \mathcal{H}_{j}^{(\pi)}, \quad \mathcal{H}_{j}^{(\pi)} := \bigoplus_{k=1}^{d_{\pi}} \mathsf{L}^{2}(X, \mu_{X}) \otimes \{\pi_{jk}\},$$

with $\pi:G\to \mathsf{U}(d_\pi)$ the finite-dimensional irreducible unitary representations of G, and $U_{\phi,\pi,j}:=U_\phi\big|_{\mathcal{H}_j^{(\pi)}}$ the restriction given by

$$U_{\phi,\pi,j}\sum_{k=1}^{d_{\pi}}\varphi_{k}\otimes\pi_{jk}=\sum_{k,\ell=1}^{d_{\pi}}\left(\varphi_{k}\circ F_{1}\right)\left(\pi_{\ell k}\circ\phi\right)\otimes\pi_{j\ell},\quad\varphi_{k}\in\mathsf{L}^{2}(X,\mu_{X}).$$

(later, we will apply commutator methods to $U_{\phi,\pi,j}$ in $\mathcal{H}_i^{(\pi)}$)

Degree of a cocycle

Definition (Degree of ϕ)

Assume that $\phi \in C^1(X, G)$ and let $M_{\phi} := \mathscr{L}_Y \phi \cdot \phi^{-1} \in C(X, \mathfrak{g})$. Then, we define the degree of ϕ as the function $P_{\phi} M_{\phi} : X \to \mathfrak{g}$ given by

$$\big(P_\phi M_\phi\big)(x) := \lim_{N\to\infty} \frac{1}{N} \sum_{n=0}^{N-1} \operatorname{Ad}_{\phi^{(n)}(x)}\big(M_\phi \circ F_n\big)(x), \ \mu_X\text{-almost every } x \in X.$$

We have $(P_{\phi}M_{\phi})(x) := \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N-1} (W_{\phi}^{n}M_{\phi})(x)$ with W_{ϕ} the unitary operator in $L^{2}(X, \mathfrak{g})$ given by

$$(W_{\phi}f)(x) := \operatorname{Ad}_{\phi(x)}(f \circ F_1)(x), \quad f \in L^2(X, \mathfrak{g}).$$

Thus, von Neumann's ergodic theorem implies that $P_{\phi} \in \mathscr{B}(\mathsf{L}^2(X,\mathfrak{g}))$ is the orthogonal projection onto $\ker(1-W_{\phi})$.

The degree $P_{\phi}M_{\phi}$ transforms in a natural way under Lie group homomorphisms and under the relation of C^1 -cohomology.

Degree under homomorphisms.

If $\phi = h \circ \delta$ with $h : G' \to G$ a Lie group homomorphism and $\delta \in C^1(X,G')$, then

$$P_{\phi}M_{\phi}=(\mathrm{d}h)_{e_{G'}}\big((P_{\delta}M_{\delta})(\cdot)\big)$$

with $(dh)_{e_{G'}}: \mathfrak{g}' \to \mathfrak{g}$ the differential of h and \mathfrak{g}' the Lie algebra of G'.

Degree under C^1 -cohomology.

If $\zeta, \delta \in C^1(X, G)$ are such that

$$\phi(x) = \zeta(x)^{-1} \delta(x) (\zeta \circ F_1)(x), \quad x \in X,$$

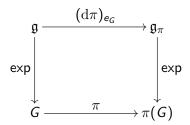
then $P_{\delta}M_{\delta} = \operatorname{Ad}_{\zeta}(P_{\phi}M_{\phi})$.

 $\pi(G)$ is a Lie group with Lie algebra \mathfrak{g}_{π} and $\pi:G\to\pi(G)\subset \mathsf{U}(d_{\pi})$ is a Lie group homomorphism. So, we obtain

$$P_{\pi \circ \phi} M_{\pi \circ \phi} = (\mathrm{d}\pi)_{\mathsf{e}_{\mathsf{G}}} \big((P_{\phi} M_{\phi})(\,\cdot\,) \big),$$

and the function $P_{\pi \circ \phi} M_{\pi \circ \phi} : X \to \mathfrak{g}_{\pi}$ is the degree of $\pi \circ \phi$.

The degree of $\pi \circ \phi$ is the image of the degree of ϕ under the differential (pushforward) $(\mathrm{d}\pi)_{e_{\mathcal{G}}}:\mathfrak{g}\to\mathfrak{g}_{\pi}$



 $P_{\phi}M_{\phi}$ and $P_{\pi\circ\phi}M_{\pi\circ\phi}$ take a simple form in two particular cases.

Lemma (F_1 uniquely ergodic and $\pi \circ \phi$ diagonal)

Assume that $\phi \in C^1(X, G)$, that F_1 is uniquely ergodic, and that $\pi \circ \phi$ is diagonal for each $\pi \in \widehat{G}$. Then,

$$\lim_{N\to\infty}\left\|\frac{1}{N}\sum_{n=0}^{N-1}W_{\pi\circ\phi}^nM_{\pi\circ\phi}-(\mathrm{d}\pi)_{e_G}(M_{\phi,\star})\right\|_{\mathsf{L}^\infty(X,\mathscr{B}(\mathbb{C}^{d_\pi}))}=0,$$

with

$$M_{\phi,\star} := \int_X \mathrm{d}\mu_X(x) \, M_\phi(x).$$

Furthermore, $P_{\phi}M_{\phi}=M_{\phi,\star}$.

Lemma (T_{ϕ} uniquely ergodic)

Assume that $\phi \in C^1(X,G)$ and that T_ϕ is uniquely ergodic. Then,

$$\lim_{N\to\infty}\left\|\frac{1}{N}\sum_{n=0}^{N-1}W_{\pi\circ\phi}^nM_{\pi\circ\phi}-(\mathrm{d}\pi)_{e_G}(M_{\phi,\star})\right\|_{L^\infty(X,\mathscr{B}(\mathbb{C}^{d_\pi}))}=0,$$

with

$$M_{\phi,\star} := \int_{X \times G} \mathrm{d}(\mu_X \otimes \mu_G)(x,g) \, \mathrm{Ad}_g M_\phi(x).$$

Furthermore, $P_{\phi}M_{\phi}=M_{\phi,\star}$.

Idea of the proofs.

The convergences in the L $^{\infty}$ -norm follow from the unique ergodicity of F_1 and T_{ϕ} . In the first lemma, $M_{\phi,\star}$ is simpler because $\pi \circ \phi$ is diagonal, so that $W^n_{\pi \circ \phi} M_{\pi \circ \phi} = M_{\pi \circ \phi} \circ F_n$.

In the case T_ϕ uniquely ergodic and G connected, we have

$$M_{\phi,\star} = \int_{X \times G} \mathrm{d}(\mu_X \otimes \mu_G)(x,g) \, \mathrm{Ad}_g M_{\phi}(x)$$

$$= \int_G \mathrm{d}\mu_G(g) \, \mathrm{Ad}_g \left(\int_X \mathrm{d}\mu_X(x) \, M_{\phi}(x) \right)$$
 $\in z(\mathfrak{g}),$

with

$$z(\mathfrak{g}) := \{ Z \in \mathfrak{g} \mid [X, Z]_{\mathfrak{g}} = 0 \text{ for all } X \in \mathfrak{g} \}$$

the center of \mathfrak{g} .

Connected semisimple groups G have trivial center $z(\mathfrak{g})=\{0\}$. Thus, there is no uniquely ergodic T_{ϕ} with nonzero degree if G is connected and semisimple (for example $G=\mathsf{SU}(n)$ or $G=\mathsf{SO}(n+1,\mathbb{R})$ with $n\geq 2$).

Mixing

To apply the abstract theorem on mixing to $U_{\phi,\pi,j}$ in $\mathcal{H}_j^{(\pi)}$, we first need an operator A:

Lemma (Definition of A)

The operator

$$A\sum_{k=1}^{d_{\pi}}\varphi_{k}\otimes\pi_{jk}:=\sum_{k=1}^{d_{\pi}}i\mathscr{L}_{Y}\varphi_{k}\otimes\pi_{jk},\quad\varphi_{k}\in\mathcal{C}^{1}(X),$$

is essentially self-adjoint in $\mathcal{H}_{j}^{(\pi)}$, with closure denoted by the same symbol. Furthermore, if $\mathcal{L}_{Y}(\pi \circ \phi) \in L^{\infty}(X, \mathscr{B}(\mathbb{C}^{d_{\pi}}))$, then $U_{\phi,\pi,j} \in C^{1}(A)$ with

$$[A, U_{\phi,\pi,j}] = iM_{\pi \circ \phi} U_{\phi,\pi,j}.$$

Next, we prove the existence of the corresponding strong limit $D_{\phi,\pi}$:

Lemma (Existence of $D_{\phi,\pi}$)

Assume that $\phi \in C^1(X,G)$. Then, the strong limit

$$D_{\phi,\pi} = \underset{N \to \infty}{\operatorname{s-lim}} \frac{1}{N} [A, (U_{\phi,\pi,j})^N] (U_{\phi,\pi,j})^{-N}$$

exists and satisfies $D_{\phi,\pi} = i \left(d\pi \right)_{e_G} \left((P_{\phi} M_{\phi})(\cdot) \right)$.

The strong limit $D_{\phi,\pi}$ of the abstract theory is equal (as a multiplication operator in $\mathcal{H}_i^{(\pi)}$) to the degree of $\pi \circ \phi$:

$$P_{\pi \circ \phi} M_{\pi \circ \phi} = (\mathrm{d}\pi)_{e_G} ((P_{\phi} M_{\phi})(\cdot)).$$

Applying the abstract theorem on mixing, we get:

Theorem (Mixing property of $U_{\phi,\pi,j}$)

Assume that $\phi \in C^1(X, G)$. Then, the strong limit $D_{\phi,\pi}$ exists and is equal to $i(\mathrm{d}\pi)_{e_G}((P_\phi M_\phi)(\cdot))$, and

- (a) $\lim_{N\to\infty}\left\langle \varphi,\left(U_{\phi,\pi,j}\right)^N\psi\right\rangle=0$ for each $\varphi\in\ker(D_{\phi,\pi})^\perp$ and $\psi\in\mathcal{H}_j^{(\pi)}$,
- (b) $U_{\phi,\pi,j}|_{\ker(D_{\phi,\pi})^{\perp}}$ has purely continuous spectrum.

Summing up the results for each π , one gets that U_{ϕ} is mixing in the subspace

$$\mathcal{H}_{\mathsf{mix}} := igoplus_{\pi \in \widehat{G}} igoplus_{j=1}^{d_\pi} \mathsf{ker}(D_{\phi,\pi})^\perp \subset \mathcal{H}.$$

If F_1 uniquely ergodic and $\pi\circ\phi$ diagonal, or if T_ϕ is uniquely ergodic, the theorem simplifies to:

Corollary

Assume that $\phi \in C^1(X,G)$ and suppose that F_1 is uniquely ergodic and $\pi \circ \phi$ diagonal, or that T_{ϕ} is uniquely ergodic. Then, the strong limit $D_{\phi,\pi}$ exists and is equal to $i(\mathrm{d}\pi)_{e_G}(M_{\phi,\star})$, and

- (a) $\lim_{N\to\infty}\left\langle \varphi,\left(U_{\phi,\pi,j}\right)^N\psi\right\rangle=0$ for each $\varphi\in\ker(D_{\phi,\pi})^\perp$ and $\psi\in\mathcal{H}_j^{(\pi)}$,
- (b) $U_{\phi,\pi,j}|_{\ker(D_{\phi,\pi})^{\perp}}$ has purely continuous spectrum.

In this case, $D_{\phi,\pi}$ is the multiplication operator by the constant matrix $i(\mathrm{d}\pi)_{e_{\mathcal{G}}}(M_{\phi,\star})$. Thus, $\ker(D_{\phi,\pi})^{\perp}$ is easy to determine.

Absolutely continuous spectrum

Let

$$a_{\phi,\pi} := \underset{x \in X}{\mathsf{ess}} \inf_{v \in \mathbb{C}^{d_\pi}, \, \|v\|_{\mathbb{C}^{d_\pi}} = 1} \left\langle v, \left(i \left(\mathrm{d} \pi \right)_{e_\mathsf{G}} \left((P_\phi M_\phi)(x) \right) \right)^2 v \right\rangle_{\mathbb{C}^{d_\pi}}.$$

Then, we have:

Theorem (Absolutely continuous spectrum of $U_{\phi,\pi,j}$)

Assume that

- (i) $\phi \in C^1(X, G)$,
- (ii) $\lim_{N\to\infty} \left\| \frac{1}{N} \sum_{n=0}^{N-1} W_{\pi\circ\phi}^n M_{\pi\circ\phi} (\mathrm{d}\pi)_{e_G} ((P_\phi M_\phi)(\cdot)) \right\|_{\mathsf{L}^\infty(X,\mathscr{B}(\mathbb{C}^{d_\pi}))} = 0,$
- (iii) $\mathscr{L}_{Y}((\mathrm{d}\pi)_{e_{G}}((P_{\phi}M_{\phi})(\cdot))) \in \mathsf{L}^{\infty}(X,\mathscr{B}(\mathbb{C}^{d_{\pi}})),$
- (iv) $M_{\pi\circ\phi}\in C^{+0}(A_{D_{\phi,\pi}})$,
- (v) $a_{\phi,\pi} > 0$.

Then, $U_{\phi,\pi,j}$ has purely absolutely continuous spectrum.

Idea of the proof.

The proof consists in checking the assumptions of the abstract theorem of the beginning.

- The condition $U_{\phi,\pi,j} \in C^1(A)$ follows from the assumption $\phi \in C^1(X,G)$.
- The existence of the uniform limit

$$D_{\phi,\pi} = \operatorname*{\mathsf{u-lim}}_{N o \infty} rac{1}{N} ig[A, ig(U_{\phi,\pi,j} ig)^N ig] ig(U_{\phi,\pi,j} ig)^{-N}$$

follows from the assumption

$$\lim_{N\to\infty}\left\|\frac{1}{N}\sum_{n=0}^{N-1}W_{\pi\circ\phi}^nM_{\pi\circ\phi}-(\mathrm{d}\pi)_{e_G}\big((P_\phi M_\phi)(\,\cdot\,)\big)\right\|_{\mathsf{L}^\infty(X,\mathscr{B}(\mathbb{C}^{d_\pi}))}=0.$$

Idea of the proof (continued).

• The condition $D_{\phi,\pi} \in C^1(A)$ follows from the assumption

$$\mathscr{L}_Y((\mathrm{d}\pi)_{\mathsf{e}_G}((P_\phi M_\phi)(\,\cdot\,)))\in\mathsf{L}^\infty(X,\mathscr{B}(\mathbb{C}^{d_\pi})).$$

- The condition $[A, U_{\phi,\pi,j}] \in C^{+0}(A_{D_{\phi,\pi}})$ follows from the assumption $M_{\pi \circ \phi} \in C^{+0}(A_{D_{\phi,\pi}})$.
- The condition

$$D_{\phi,\pi}^2 E^{U_{\phi,\pi,j}}(\Theta) \ge c_{\Theta} E^{U_{\phi,\pi,j}}(\Theta) \quad (\text{with } \Theta = \mathbb{S}^1)$$

follows from the assumption $a_{\phi,\pi} > 0$.

Summing up the results for each π , one gets that U_ϕ has purely absolutely continuous spectrum in a subspace

$$\mathcal{H}_{\mathsf{ac}} \subset \mathcal{H}_{\mathsf{mix}} \subset \mathcal{H}$$
.

If F_1 uniquely ergodic and $\pi \circ \phi$ diagonal, or if T_{ϕ} is uniquely ergodic, the theorem simplifies to:

Corollary

Assume that

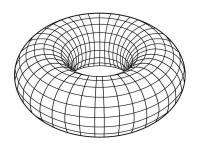
- (i) $\phi \in C^1(X, G)$,
- (ii) F_1 is uniquely ergodic and $\pi \circ \phi$ diagonal, or T_{ϕ} is uniquely ergodic,
- (iii) $M_{\pi\circ\phi}\in C^{+0}(A_{D_{\phi,\pi}})$,
- (iv) $\det ((\mathrm{d}\pi)_{\mathsf{e}_G}(M_{\phi,\star})) \neq 0.$

Then, $U_{\phi,\pi,i}$ has purely absolutely continuous spectrum.

In summary, in each subspace $\mathcal{H}_j^{(\pi)}$ we use a different limit $D_{\phi,\pi}$ and conjugate operator $A_{D_{\phi,\pi},N}$ to determine the spectral properties of $U_{\phi,\pi,j} = U_{\phi}\big|_{\mathcal{H}_i^{(\pi)}}$.

		l I	
$\mathcal{H}_1^{(\pi_4)}$	$\mathcal{H}_2^{(\pi_4)}$	$\mathcal{H}_3^{(\pi_4)}$	$\mathcal{H}_4^{(\pi_4)}$
$\mathcal{H}_1^{(\pi_3)}$	$\mathcal{H}_2^{(\pi_3)}$	$\mathcal{H}_3^{(\pi_3)}$	$\mathcal{H}_4^{(\pi_3)}$
$\mathcal{H}_1^{(\pi_2)}$	$\mathcal{H}_2^{(\pi_2)}$	$\mathcal{H}_3^{(\pi_2)}$	$\mathcal{H}_4^{(\pi_2)}$
$\mathcal{H}_1^{(\pi_1)}$	$\mathcal{H}_2^{(\pi_1)}$	$\mathcal{H}_3^{(\pi_1)}$	$\mathcal{H}_4^{(\pi_1)}$

Cocycles with values in a torus



Assume that $G = \mathbb{T}^d := (\mathbb{S}^1)^d \ (d \in \mathbb{N}^*)$. Then, $\mathfrak{g} = i \mathbb{R}^d$, each $\pi^{(q)} \in \widehat{\mathbb{T}^d}$ is a character of \mathbb{T}^d given by

$$\pi^{(q)}(z) := z_1^{q_1} \cdots z_d^{q_d}, \quad z = (z_1, \dots, z_d) \in \mathbb{T}^d, \ q = (q_1, \dots, q_d) \in \mathbb{Z}^d,$$

and

$$\mathcal{H}^{(q)} := \mathcal{H}_1^{(\pi^{(q)})} = \mathsf{L}^2(X, \mu_X) \otimes \{\pi^{(q)}\}.$$

If $\phi \in C^1(X, \mathbb{T}^d)$, then

$$D_{\phi,q} := D_{\phi,\pi^{(q)}} = \mathop{\mathrm{s-lim}}_{N \to \infty} \frac{1}{N} \big[A, \big(U_{\phi,\pi^{(q)},1} \big)^N \big] \big(U_{\phi,\pi^{(q)},1} \big)^{-N}$$

exists and is equal to $i(\mathrm{d}\pi^{(q)})_e((P_\phi M_\phi)(\,\cdot\,))$ with $e=e_{\mathbb{T}^d}=(1,\ldots,1)$, and U_ϕ is mixing in the subspace

$$\mathcal{H}_{\mathsf{mix}} := igoplus_{q \in \mathbb{Z}^d} \mathsf{ker}(D_{\phi,q})^\perp \subset \mathcal{H}.$$

To say more on U_{ϕ} , we further assume that F_1 is uniquely ergodic and

$$\int_0^1 \frac{\mathrm{d}t}{t} \left\| \mathscr{L}_Y(\pi^{(q)} \circ \phi) \circ F_t - \mathscr{L}_Y(\pi^{(q)} \circ \phi) \right\|_{\mathsf{L}^\infty(X,\mu_X)} < \infty, \quad q \in \mathbb{Z}^d.$$

The unique ergodicity of F_1 implies that

$$D_{\phi,q} = i \left(\mathrm{d} \pi^{(q)} \right)_{e} (M_{\phi,\star}) = i \int_{X} \mathrm{d} \mu_{X}(x) \, M_{\pi^{(q)} \circ \phi}(x) \in \mathbb{R}$$

with

$$M_{\phi,\star} = \int_X \mathrm{d}\mu_X(x)\, M_\phi(x) \in i\,\mathbb{R}^d \quad ext{and} \quad M_{\pi^{(q)}\circ\phi} = \mathscr{L}_Y(\pi^{(q)}\circ\phi)\cdot(\pi^{(q)}\circ\phi)^{-1}.$$

We also have

$$A_{D_{\phi,q}} = AD_{\phi,q} + D_{\phi,q}A = 2AD_{\phi,q},$$

which implies that $C^{+0}(A) \subset C^{+0}(A_{D_{\phi,q}})$. Thus, the assumption $M_{\pi \circ \phi} \in C^{+0}(A_{D_{\phi,\pi}})$ of the corollary reduces to $M_{\pi^{(q)} \circ \phi} \in C^{+0}(A)$, which follows from the Dini-type assumption above.

The last assumption of the corollary $\det \left((\mathrm{d} \pi)_{e_G} (M_{\phi,\star}) \right) \neq 0$ is equivalent to $D_{\phi,q} \neq 0$. Thus, we obtain that U_{ϕ} has purely absolutely continuous spectrum in the subspace

$$\mathcal{H}_{\mathsf{ac}} := igoplus_{q \in \mathbb{Z}^d,\, D_{\phi,q}
eq 0} \mathcal{H}^{(q)} \subset \mathcal{H}_{\mathsf{mix}}.$$

Example

If
$$X = G = \mathbb{T}$$
, $\phi(x) = x^m \ (m \in \mathbb{Z})$, and

$$F_t(x) := x e^{2\pi i t \alpha}, \quad t \in \mathbb{R}, \ x \in \mathbb{T}, \ \alpha \in \mathbb{R} \setminus \mathbb{Q},$$

then $\phi \in C^{\infty}(\mathbb{T}, \mathbb{T})$, F_1 is uniquely ergodic (irrational rotation), the degree of ϕ is

$$M_{\phi,\star} = \int_{\mathbb{T}} d\mu_{\mathbb{T}}(x) M_{\phi}(x)$$

$$= \int_{\mathbb{T}} d\mu_{\mathbb{T}}(x) \left(\frac{d}{dt} \Big|_{t=0} \phi(x e^{2\pi i t \alpha}) \right) \phi(x)^{-1}$$

$$= \int_{\mathbb{T}} d\mu_{\mathbb{T}}(x) \left(\frac{d}{dt} \Big|_{t=0} x^m e^{2m\pi i t \alpha} \right) x^{-m}$$

$$= 2m\pi i \alpha,$$

Example (continued)

and the degree of $\pi^{(q)} \circ \phi$ is

$$\left(\mathrm{d}\pi^{(q)}\right)_{1}(M_{\phi,\star}) = \frac{\mathrm{d}}{\mathrm{d}t}\Big|_{t=0}\pi^{(q)}\left(\mathrm{e}^{tM_{\phi,\star}}\right) = 2mq\pi i\alpha.$$

Therefore, if $m \neq 0$, we obtain that U_{ϕ} has purely absolutely continuous spectrum in the subspace

$$\begin{split} \mathcal{H}_{\mathsf{ac}} &= \bigoplus_{q \in \mathbb{Z} \setminus \{0\}} \mathcal{H}^{(q)} \\ &= \bigoplus_{q \in \mathbb{Z} \setminus \{0\}} \mathsf{L}^2(X, \mu_X) \otimes \left\{ \pi^{(q)} \right\} \\ &= \left\{ \begin{array}{l} \text{orthocomplement of the functions} \\ \text{depending only on the first variable} \end{array} \right\}. \end{split}$$

Cocycles with values in U(2)

Assume that

$$G = \mathsf{U}(2) = \left\{ \begin{pmatrix} z_1 & z_2 \\ -\operatorname{e}^{i\theta} \overline{z_2} & \operatorname{e}^{i\theta} \overline{z_1} \end{pmatrix} \mid \theta \in [0, 2\pi), \ z_1, z_2 \in \mathbb{C}, \ |z_1|^2 + |z_2|^2 = 1 \right\},$$

$$\mathfrak{g} = \mathfrak{u}(2) = \left\{ \begin{pmatrix} is_1 & z \\ -\overline{z} & is_2 \end{pmatrix} \mid s_1, s_2 \in \mathbb{R}, \ z \in \mathbb{C} \right\}.$$

Using the representation theory for SU(2) and the epimorphism

$$\mathbb{T} \times \mathsf{SU}(2) \ni (z,g) \mapsto zg \in \mathsf{U}(2),$$

we can determine all the representations $\pi^{(\ell,m)}$ of U(2),

$$\pi^{(\ell,m)}: \mathsf{U}(2) \to \mathsf{U}(\ell+1), \quad \ell \in \mathbb{N}, \ m \in \mathbb{Z}.$$

If $\phi \in C^1(X; U(2))$, then

$$D_{\phi,\ell,m} := D_{\phi,\pi^{(\ell,m)}} = \operatorname*{s-lim}_{N \to \infty} \frac{1}{N} \big[A, \big(U_{\phi,\pi^{(\ell,m)},j} \big)^N \big] \big(U_{\phi,\pi^{(\ell,m)},j} \big)^{-N}$$

exists and is equal to $i(\mathrm{d}\pi^{(\ell,m)})_{I_2}((P_\phi M_\phi)(\,\cdot\,))$ with $I_2:=(\begin{smallmatrix}1&0\\0&1\end{smallmatrix})=e_{\mathrm{U}(2)}$, and U_ϕ is mixing in the subspace

$$igoplus_{m \in \mathbb{Z}} igoplus_{\ell \in \mathbb{N}} igoplus_{j \in \{0,...,\ell\}} \ker(D_{\phi,\ell,m})^{\perp} \subset \mathcal{H}.$$

To say more on U_{ϕ} , we further assume that T_{ϕ} is uniquely ergodic. In this case, we have $D_{\phi,\ell,m}=i(\mathrm{d}\pi^{(\ell,m)})_{b}(M_{\phi,\star})$ with

$$M_{\phi,\star} \in z(\mathfrak{u}(2)) = \{isl_2 \mid s \in \mathbb{R}\}$$

Therefore, $M_{\phi,\star}=is_{\phi}I_2$ for some $s_{\phi}\in\mathbb{R}$.

Using an explicit formula for $\pi^{(\ell,m)}$, we obtain

$$i(\mathrm{d}\pi^{(\ell,m)})_{I_2}(M_{\phi,\star})_{j,k} = -s_{\phi}(2m-\ell)j!(\ell-j)!\,\delta_{j,k}, \quad j,k\in\{0,\ldots,\ell\}.$$
(constant diagonal matrix)

Thus, if $s_{\phi} \neq 0$, U_{ϕ} is mixing in the subspace

$$\mathcal{H}_{\mathsf{mix}} := igoplus_{m \in \mathbb{Z}} igoplus_{\ell \in \mathbb{N} \setminus \{2m\}} igoplus_{j \in \{0,...,\ell\}} \mathcal{H}_j^{(\pi^{(\ell,m)})} \subset \mathcal{H}.$$

Under an additional regularity assumption of Dini-type on $\mathscr{L}_Y(\pi^{(\ell,m)} \circ \phi)$, we obtain that U_ϕ has purely absolutely continuous spectrum in \mathcal{H}_{mix} .

Example

Using the isomorphism

$$\mathsf{SO}(3,\mathbb{R}) imes \mathbb{T} \simeq \mathsf{U}(2)$$

and the works of Eliasson and Hou on skew products on $\mathbb{T}^d \times SO(3,\mathbb{R})$, we can produce skew-products T_ϕ on $\mathbb{T}^d \times U(2)$ satisfying the assumptions.

Namely, skew-products T_{ϕ} with $\phi \in C^{\infty}(\mathbb{T}^d; U(2))$, T_{ϕ} uniquely ergodic, and nonzero degree $M_{\phi,\star} = i s_{\phi} I_2$.

Thank you!

References

- \bullet K. Fraczek. On cocycles with values in the group $\mathrm{SU}(2).$ Monatsh. Math., 2000
- N. Karaliolios. Global aspects of the reducibility of quasiperiodic cocycles in semisimple compact Lie groups. PhD thesis, 2013
- R. Tiedra de Aldecoa. Degree, mixing, and absolutely continuous spectrum of cocycles with values in compact Lie groups. preprint on arXiv
- R. Tiedra de Aldecoa. The absolute continuous spectrum of skew products of compact Lie groups. Israel J. Math., 2015