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1 Purpose

Let H be a self-adjoint operator in a Hilbert space H and let T be a

linear operator in H.

Roughly, the operator T is called a time operator for H if it

satisfies the canonical commutation relation

[T,H] = i , (CCR)

or the relation

T e−itH = e−itH(T + t) .

There are many sets of conditions providing a precise meaning to

the canonical commutation relation.

But, in most cases, the pair {H, T } is given from the beginning !
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Our point of view is diferent...

Starting from a self-adjoint operator H, we want to know if there

exists a T such that (CCR) holds in a suitable sense ?

and

Can we find a general procedure to construct such a T ?

... this is the subject of the talk.
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Consider in L2(Rd) a dispersive operator H := h(P) with

h : Rd → R and P ≡ (−i∂1, . . . ,−i∂d).
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2 Guiding example

Consider in L2(Rd) a dispersive operator H := h(P) with

h : Rd → R and P ≡ (−i∂1, . . . ,−i∂d). Let Q ≡ (Q1, . . . , Qd) be

the position operators in L2(Rd) and f an appropriate Schwartz

function on R
d with f = 1 in a neighbourhood of 0.

Then one has for suitable ϕ ∈ L2(Rd):

lim
r→∞

1
2

∫∞

0

dt
〈

ϕ,
[

e−itH f(Q/r) eitH − eitH f(Q/r) e−itH
]

ϕ
〉

=
〈

ϕ, i d

dH
ϕ
〉

,

where d

dH
acts as d

dλ
in the spectral representation of H, i.e.

[

i d

dH
, H

]

= i .
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• This formula (which appears in the theory of quantum time

delay) relates the time evolution of localisation operators to the

derivative with respect to the spectral parameter of H.

• It furnishes a standardized procedure to obtain a time operator

T (i.e. T ≈ i d

dH
) only constructed in terms of H, the position

operators Q and the function f.

The formula can be extended to the case of an abstract pair of

operator H and position operators Φ acting in a Hilbert space H, if H

and Φ satisfy two appropriate commutation relations.
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3 Framework

Suppose given a self-adjoint operator H and a family

Φ ≡ (Φ1, . . . , Φd) of mutually commuting self-adjoint operators in

a Hilbert space H.

Two assumptions:

(A) The family of operators H(x) := e−ix·Φ H eix·Φ, x ∈ R
d,

mutually commute.

(B) For some ω ∈ C \ R the map

R
d ∋ x 7→

[

H(x) −ω
]−1

∈ B(H)

is 3-times strongly differentiable.
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4 Main theorem

Under Assumptions (A) and (B), we have:

Theorem 4.1. Let f be a Schwartz function on Rd such that f = 1

on a neighbourhood of 0 and f(x) = f(−x) for each x ∈ Rd. Then,

for each ϕ in some suitable subset of H one has

lim
r→∞

1
2

∫∞

0

dt
〈

ϕ,
[

e−itH f(Φ/r) eitH − eitH f(Φ/r) e−itH
]

ϕ
〉

= 〈ϕ, Tfϕ〉,

(T-Op)

where the operator Tf acts, in an appropriate sense, as i d

dλ
in the

spectral representation of H.
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4 Main theorem

Under Assumptions (A) and (B), we have:

Theorem 4.1. Let f be a Schwartz function on Rd such that f = 1

on a neighbourhood of 0 and f(x) = f(−x) for each x ∈ Rd. Then,

for each ϕ in some suitable subset of H one has

lim
r→∞

1
2

∫∞

0

dt
〈

ϕ,
[

e−itH f(Φ/r) eitH − eitH f(Φ/r) e−itH
]

ϕ
〉

= 〈ϕ, Tfϕ〉,

(T-Op)

where the operator Tf acts, in an appropriate sense, as i d

dλ
in the

spectral representation of H.

(Tf is a time operator for H.)



9/21

Remark 1:



9-a/21

Remark 1:

Let H ′

j be the self-adjoint operator associated with i[H,Φj] and

H ′ :=
(

H ′

1, . . . , H
′

d

)

. Then Tf is formally given by

Tf = −1
2

(

Φ · R ′

f(H
′) + R ′

f(H
′) ·Φ

)

,

where

Rf : R
d \ {0} → C, Rf(x) :=

∫+∞

0

dµ

µ

[

f(µx) − χ[0,1](µ)
]

.
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Remark 1:

Let H ′

j be the self-adjoint operator associated with i[H,Φj] and

H ′ :=
(

H ′

1, . . . , H
′

d

)

. Then Tf is formally given by

Tf = −1
2

(

Φ · R ′

f(H
′) + R ′

f(H
′) ·Φ

)

,

where

Rf : R
d \ {0} → C, Rf(x) :=

∫+∞

0

dµ

µ

[

f(µx) − χ[0,1](µ)
]

.

When f is radial, R ′

f(x) = −x−2x and

Tf ≡ T = 1
2

(

Φ · H ′

(H ′)2
+ H ′

(H ′)2
·Φ

)

.
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Thus

[T,H] = 1
2

∑
j

{
[Φj, H]

H ′

j

(H ′)2
+

H ′

j

(H ′)2
[Φj, H]

}

= i
2

∑
j

{
H ′

j

H ′

j

(H ′)2
+

H ′

j

(H ′)2
H ′

j

}

= i.
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Remark 2:

We must avoid the the case “ (H ′)2 = 0 ”, which leads to

non-finiteness of the expectation value 〈ϕ, Tfϕ〉.
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We must avoid the the case “ (H ′)2 = 0 ”, which leads to

non-finiteness of the expectation value 〈ϕ, Tfϕ〉.

This suggests the definition:

Definition 4.2. A number λ ∈ R is a critical value of H if

lim
εց0

∥

∥

[

(H ′)2 + ε
]−1

EH
(

(λ− δ, λ+ δ)
)
∥

∥ = +∞.

for all δ > 0. We denote by κ(H) the set of critical values of H.
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Remark 2:

We must avoid the the case “ (H ′)2 = 0 ”, which leads to

non-finiteness of the expectation value 〈ϕ, Tfϕ〉.

This suggests the definition:

Definition 4.2. A number λ ∈ R is a critical value of H if

lim
εց0

∥

∥

[

(H ′)2 + ε
]−1

EH
(

(λ− δ, λ+ δ)
)
∥

∥ = +∞.

for all δ > 0. We denote by κ(H) the set of critical values of H.

So, the vectors ϕ ∈ H in the theorem are chosen such that

ϕ = EH(J)ϕ for some set J ⊂ R \ κ(H).
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This definition extends the usual definition of critical values when

H = h(P) and Φ = Q:

κh :=
{
λ ∈ R | ∃x ∈ R

d such that h(x) = λ and h ′(x) = 0
}
.
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This definition extends the usual definition of critical values when

H = h(P) and Φ = Q:

κh :=
{
λ ∈ R | ∃x ∈ R

d such that h(x) = λ and h ′(x) = 0
}
.

We essentially replace in the definition the derivative

(∂jh)(P) = i[h(P), Qj]

by its natural counterpart

H ′

j = i[H,Φj].

Proposition 4.3. κ(H) is closed, contains the set of eigenvalues of

H, and the spectrum of H in σ(H) \ κ(H) is purely absolutely

continuous.

(proof by commutators methods)



13/21

Remark 3:

Consider a scattering pair {H,H+ V} with unitary scattering

operator S.
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Remark 3:

Consider a scattering pair {H,H+ V} with unitary scattering

operator S.

The global time delay τ(ϕ) for the state ϕ defined in terms of the

localisation operators f(Φ/r) can be expressed as follows:

τ(ϕ) is equal to the l.h.s. of (T-Op) minus the same quantity with ϕ

replaced by Sϕ.

Thus

τ(ϕ) = −〈ϕ, S∗[Tf, S]ϕ〉,

and

τ(ϕ) =
〈

ϕ,−iS∗ dS
dH

ϕ
〉

,

if Tf acts as i d

dλ
in the spectral representation of H.

(Abstract Eisenbud-Wigner Formula)
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5 Some hints on the proof

〈

ϕ,
[

eitH f(Φ/r) e−itH − e−itH f(Φ/r) eitH
]

ϕ
〉

=

∫

Rd

dx (F f)(x)
〈

ϕ,
[

eitH ei
x
r
·Φ e−itH − e−itH ei

x
r
·Φ eitH

]

ϕ
〉
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〈

ϕ,
[

eitH f(Φ/r) e−itH − e−itH f(Φ/r) eitH
]

ϕ
〉

=

∫

Rd

dx (F f)(x)
〈

ϕ,
[

eitH ei
x
r
·Φ e−itH − e−itH ei

x
r
·Φ eitH

]

ϕ
〉

=

∫

Rd

dx (F f)(x)
〈

ϕ,
[

ei
x
r
·Φ eit[H(x

r
)−H]− eit[H(− x

r
)−H] ei

x
r
·Φ

]

ϕ
〉
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5 Some hints on the proof

〈

ϕ,
[

eitH f(Φ/r) e−itH − e−itH f(Φ/r) eitH
]

ϕ
〉

=

∫

Rd

dx (F f)(x)
〈

ϕ,
[

eitH ei
x
r
·Φ e−itH − e−itH ei

x
r
·Φ eitH

]

ϕ
〉

=

∫

Rd

dx (F f)(x)
〈

ϕ,
[

ei
x
r
·Φ eit[H(x

r
)−H]− eit[H(− x

r
)−H] ei

x
r
·Φ

]

ϕ
〉

=

∫

Rd

dx (F f)(x)
〈

ϕ,
[(

ei
x
r
·Φ −1

)

eit[H(x
r
)−H]− eit[H(−x

r
)−H]

(

ei
x
r
·Φ −1

)]

ϕ
〉

+

∫

Rd

dx (F f)(x)
〈

ϕ,
[

eit[H(x
r
)−H]− eit[H(−x

r
)−H]

]

ϕ
〉

︸ ︷︷ ︸
= 0 because f(x)=f(−x)
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So, after the changes of variables µ := t/r, ν := 1/r, one gets

lim
r→∞

1
2

∫∞

0

dt
〈

ϕ,
[

e−itH f(Φ/r) eitH − eitH f(Φ/r) e−itH
]

ϕ
〉

= −1
2
lim
νց0

∫∞

0

dµ

∫

Rd

dx (F f)(x)
〈

ϕ,
{

1
ν

(

eiνx·Φ −1
)

ei
µ
ν
[H(νx)−H]

− ei
µ
ν
[H(−νx)−H] 1

ν

(

eiνx·Φ −1
)}

ϕ
〉

.
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So, after the changes of variables µ := t/r, ν := 1/r, one gets

lim
r→∞

1
2

∫∞

0

dt
〈

ϕ,
[

e−itH f(Φ/r) eitH − eitH f(Φ/r) e−itH
]

ϕ
〉

= −1
2
lim
νց0

∫∞

0

dµ

∫

Rd

dx (F f)(x)
〈

ϕ,
{

1
ν

(

eiνx·Φ −1
)

ei
µ
ν
[H(νx)−H]

− ei
µ
ν
[H(−νx)−H] 1

ν

(

eiνx·Φ −1
)}

ϕ
〉

.

The rest of the proof consist in justifying the interchange of the

limit with the integrals...
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6 Examples

Example 6.1 (H ′ constant). Suppose that H ′ = v ∈ Rd \ {0}. Then

• H(x) = H+ x · v is C∞ and mutually commuting,

• κ(H) = ∅,

• σ(H) = σac(H) = R,

• Tf = −R ′

f(v) ·Φ.
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6 Examples

Example 6.1 (H ′ constant). Suppose that H ′ = v ∈ Rd \ {0}. Then

• H(x) = H+ x · v is C∞ and mutually commuting,

• κ(H) = ∅,

• σ(H) = σac(H) = R,

• Tf = −R ′

f(v) ·Φ.

Friedrichs-type Hamiltonians H := v · P + V(Q) and Stark

Hamiltonians H := P2 + v ·Q with position operators Φ := Q and

Φ := P in L2(Rd) fit into this construction.
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Example 6.2 (H ′ = H). Suppose, with d = 1, that H(x) = ex H

(C∞ and mutually commuting). Then

• H ′ = H,

• κ(H) = {0},

• σac(H) = σ(H) \ {0} (possible eigenvalue at 0),

• Tf = −1
2

(

ΦR ′

f(H) + R ′

f(H)Φ
)

.
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Example 6.2 (H ′ = H). Suppose, with d = 1, that H(x) = ex H

(C∞ and mutually commuting). Then

• H ′ = H,

• κ(H) = {0},

• σac(H) = σ(H) \ {0} (possible eigenvalue at 0),

• Tf = −1
2

(

ΦR ′

f(H) + R ′

f(H)Φ
)

.

In the Hilbert space H := ℓ2(N), the Jacobi operator

(Hϕ)(n) := (n− 1)ϕ(n− 1) + (2n− 1)ϕ(n) + nϕ(n + 1),

and

(Φϕ)(n) := − i
2

{
(n− 1)ϕ(n− 1) − nϕ(n + 1)

}
.

fit into this construction.



18/21

Example 6.3 (Dirac). Consider in H := L2(R3;C4) the Dirac

operator

H := α · P + βm

and take the Wigner-Newton position operator

Φ := U
−1
FW

QUFW (UFW = Foldy-Wouthuysen transformation).
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Example 6.3 (Dirac). Consider in H := L2(R3;C4) the Dirac

operator

H := α · P + βm

and take the Wigner-Newton position operator

Φ := U
−1
FW

QUFW (UFW = Foldy-Wouthuysen transformation).

Then H(x) =

√

(P+x)2+m2

P2+m2 H is C∞ and mutually commuting, and

• H ′

j = PjH
−1,

• κ(H) = {±m},

• σ(H) = σac(H) = (−∞,−m] ∪ [m,∞),

• T = 1
2

{
Φ · PP−2H + PP−2H ·Φ

}
when f is radial.
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Example 6.4 (Convolutions). Let G be a locally compact group

with a left Haar measure ρ. In H := L2(G, dρ) we consider

Hµϕ := µ ∗ϕ for µ = bounded Radon measure on G,

and take Φ ≡ (Φ1, . . . , Φd) with Φj continuous group morphisms

from G to R.
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and take Φ ≡ (Φ1, . . . , Φd) with Φj continuous group morphisms

from G to R.

Suppose that µ has compact support and is central, i.e.

µ(h−1Eh) = µ(E) for each h ∈ G and each Borel subset E of G.
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Example 6.4 (Convolutions). Let G be a locally compact group

with a left Haar measure ρ. In H := L2(G, dρ) we consider

Hµϕ := µ ∗ϕ for µ = bounded Radon measure on G,

and take Φ ≡ (Φ1, . . . , Φd) with Φj continuous group morphisms

from G to R.

Suppose that µ has compact support and is central, i.e.

µ(h−1Eh) = µ(E) for each h ∈ G and each Borel subset E of G.

Then

Hµ(x)ϕ =

∫

G

dµ(h) e−ix·Φ(h)ϕ(h−1 · )

is C∞ and mutually commuting.
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Example 6.5 (H = h(P)). Consider in H := L2(Rd) the operator

H := h(P), where h ∈ C3(Rd;R) satisfies some hypoelliptic decay

assumptions, and take Φ := Q.



20-a/21

Example 6.5 (H = h(P)). Consider in H := L2(Rd) the operator

H := h(P), where h ∈ C3(Rd;R) satisfies some hypoelliptic decay

assumptions, and take Φ := Q.

Then H(x) = h(P + x) is C3 and mutually commuting.
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