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Let H be a self-adjoint operator in a Hilbert space H and let T be a
linear operator in H.
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1 Purpose

Let H be a self-adjoint operator in a Hilbert space H and let T be a

linear operator in H.

Roughly, the operator T is called a time operator for H if it
satisfies the canonical commutation relation

or the relation
Te—itH _ e—itH(T 4+ t) .

There are many sets of conditions providing a precise meaning to

the canonical commutation relation.

But, in most cases, the pair {H, T} is given from the beginning!
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Our point of view is diferent...

Starting from a self-adjoint operator H, we want to know if there
exists a T such that (CCR) holds in a suitable sense?

and

Can we find a general procedure to construct such a T7?

... this is the subject of the talk.
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2 Guiding example

Consider in L?(R9) a dispersive operator H := h(P) with
h:RY - R and P = (—i0y,...,—i04).
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Consider in L?(R9) a dispersive operator H := h(P) with

h:R4 - R and P = (—i07,...,—104). Let Q = (Q1,...,Qq) be
the position operators in L?(RY) and f an appropriate Schwartz
function on RY with f =1 in a neighbourhood of 0.
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the position operators in L?(RY) and f an appropriate Schwartz
function on RY with f =1 in a neighbourhood of 0.
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where 717 acts as g5 in the spectral representation of H,
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2 Guiding example

Consider in L?(R9) a dispersive operator H := h(P) with

h:R4 - R and P = (—i07,...,—104). Let Q = (Q1,...,Qq) be
the position operators in L?(RY) and f an appropriate Schwartz
function on RY with f =1 in a neighbourhood of 0.

Then one has for suitable ¢ € L?(R9):

lim 3 J dt (@, [e M f(Q/r) ™ —e™ f(Q/m) e o) = (9,155 @),

T—00 0

d d - . :
where 117 acts as g5 in the spectral representation of H, i.e.
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e This formula (which appears in the theory of quantum time
delay) relates the time evolution of localisation operators to the

derivative with respect to the spectral parameter of H.
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delay) relates the time evolution of localisation operators to the
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e It furnishes a standardized procedure to obtain a time operator

T (i.e. Tx idiH) only constructed in terms of H, the position

operators Q and the function f.
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e This formula (which appears in the theory of quantum time
delay) relates the time evolution of localisation operators to the

derivative with respect to the spectral parameter of H.

e It furnishes a standardized procedure to obtain a time operator

T (i.e. Tx idiH) only constructed in terms of H, the position

operators Q and the function f.

The formula can be extended to the case of an abstract pair of
operator H and position operators @ acting in a Hilbert space H, if H
and @ satisfy two appropriate commutation relations.
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3 Framework

Suppose given a self-adjoint operator H and a family
O = (Dq,...,D4) of mutually commuting self-adjoint operators in
a Hilbert space H.

Two assumptions:

(A) The family of operators H(x) := e > ® He™? x ¢ R4,

mutually commute.

(B) For some w € C\ R the map
R 5 x - [H(x) — w}q c B(H)

is 3-times strongly differentiable.
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4 Main theorem

Under Assumptions (A) and (B), we have:

Theorem 4.1. Let f be a Schwartz function on RY such that f =1
on a neighbourhood of 0 and f(x) = f(—x) for each x € R%. Then,

for each @ in some suitable subset of H one has

lim JO dt (@, [e " f(@/r) "M —e"f(@/r) e @) = (0, Tro),
(T-Op)
where the operator T¢ acts, in an appropriate sense, as i% in the

spectral representation of H.
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4 Main theorem

Under Assumptions (A) and (B), we have:

Theorem 4.1. Let f be a Schwartz function on RY such that f =1
on a neighbourhood of 0 and f(x) = f(—x) for each x € R%. Then,

for each @ in some suitable subset of H one has

lim JO dt (@, [e " f(@/r) "M —e"f(@/r) e @) = (0, Tro),
(T-Op)
where the operator T¢ acts, in an appropriate sense, as i% in the

spectral representation of H.

(T¢ is a time operator for H.)
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Remark 1:
Let Hj’ be the self-adjoint operator associated with i[H, @;] and
H' = (H{,. . Hé). Then T¢ is formally given by

T = —3 (@ R{(H') + R{(H') - D),

where

+o00
R : RO\ {0} — C, Rf(x):zjo %‘[f(ux)—x[o,n(u)].



Remark 1:
Let Hj’ be the self-adjoint operator associated with i[H, @;] and
H' = (H{,. . Hé). Then T¢ is formally given by

T = —3 (@ R{(H') + R{(H') - D),

where

+o00
R : RO\ {0} — C, Rf(x):zjo %‘[f(ux)—x[o,n(u)].

When f is radial, R}(x) = —x"%x and

Tr=T=3(0 Fm+ - D).

9-b/21
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Thus
H/ !
TH] = 3 55 {19, Hl g + oz (@5, HI
. H/ H/
::%Zh{HhHﬁz+u+ﬁF¥}
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Remark 2:
We must avoid the the case “(H’)? =07, which leads to

non-finiteness of the expectation value (@, Tr@).
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Remark 2:
We must avoid the the case “(H’)? =07, which leads to

non-finiteness of the expectation value (@, Tr@).

This suggests the definition:
Definition 4.2. A number A € R is a critical value of H if

g%ﬂ“ﬁmz+d_%ﬂak—&A+5DH=+mx

for all & > 0. We denote by k(H) the set of critical values of H.
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Remark 2:
We must avoid the the case “(H’)? =07, which leads to

non-finiteness of the expectation value (@, Tr@).

This suggests the definition:
Definition 4.2. A number A € R is a critical value of H if

g%ﬂ“ﬁmz+d_%ﬂak—&A+5DH=+mx

for all & > 0. We denote by k(H) the set of critical values of H.

So, the vectors ¢ € H in the theorem are chosen such that
@ = EM(]) @ for some set ] C R\ k(H).
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This definition extends the usual definition of critical values when
H =h(P) and ® = Q:

Kph i= {7\ € R|3x € R? such that h(x) = A and h'(x) = O}.



12-a/21

This definition extends the usual definition of critical values when
H =h(P) and ® = Q:

Kph i= {7\ € R|3x € R? such that h(x) = A and h'(x) = O}.
We essentially replace in the definition the derivative
(05h)(P) = i[h(P), Q;]

by its natural counterpart

H/ = i[H, @;].
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Proposition 4.3. «(H) is closed, contains the set of eigenvalues of
H, and the spectrum of H in o(H) \ k(H) is purely absolutely

continuous.
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This definition extends the usual definition of critical values when
H =h(P) and ® = Q:

Kph i= {7\ € R|3x € R? such that h(x) = A and h'(x) = O}.

We essentially replace in the definition the derivative
(05h)(P) = i[h(P), Q;]
by its natural counterpart

H/ = i[H, @;).

Proposition 4.3. «(H) is closed, contains the set of eigenvalues of
H, and the spectrum of H in o(H) \ k(H) is purely absolutely

continuous.

(proof by commutators methods)
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Remark 3:

Consider a scattering pair {H, H 4+ V} with unitary scattering
operator S.
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Remark 3:

Consider a scattering pair {H, H 4+ V} with unitary scattering
operator S.

The global time delay Tt(¢) for the state ¢ defined in terms of the
localisation operators f(®/r) can be expressed as follows:

T(@) is equal to the l.h.s. of (T-Op) minus the same quantity with ¢
replaced by S¢.

Thus
(@) = —(9,S*[Ts, Slg),
and
(@) = (@, —iS* 42 @),
d

if Tr acts as 13y in the spectral representation of H.
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Remark 3:

Consider a scattering pair {H, H 4+ V} with unitary scattering
operator S.

The global time delay Tt(¢) for the state ¢ defined in terms of the
localisation operators f(®/r) can be expressed as follows:

T(@) is equal to the l.h.s. of (T-Op) minus the same quantity with ¢
replaced by S¢.

Thus
(@) = —(9,S*[Ts, Slg),
and
(@) = (@, —iS* 42 @),
- d

if Tr acts as 13y in the spectral representation of H.

(Abstract Eisenbud-Wigner Formula)
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5 Some hints on the proof

<(p> [eitH f((D/T) e—itH L e—itH f((D/T) eitH } (p>

— J . QX (gf) (X)<(p, [eitH ei%'q) e—itH _e—itH ei%'q) eitH } (P>
R
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5 Some hints on the proof

<(P, [eitH f((D/T) e—itH _e—itH f((D/T) eitH } (P>
r ' . ' . . .
— QX (Lg;f) (X)<(p, [eltH el;-CD e—ltH _e—ltH el?-(D e1tH } (P>
JRd

— P dx (g;ﬂ (X)<(p, [ei§-® eit[H(%)—H] _eit[H(—
JRd

=[x
|
=
@)
f-'
= |®
(S
1
©
~~—
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5 Some hints on the proof

<(p> [eitH f((D/T) e—itH L e—itH f((D/T) eitH } (p>

-
_ dx (Lg;f) (X)<(p, [eltH el%-CD e—ltH _e—ltH el%-(D e1tH } (P>

— 0 because f(x)=f(—x)
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So, after the changes of variables u:=t/r, v:=1/r, one gets

T—00 2

lim 1 JOO dt (@, [e " f(@/r) ettt —et T f(@/r) e @)

o “mJ du J dx (FH)(x)(@, {5 (e —1) erv HO-H
Rd
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So, after the changes of variables u:=1t/r, v:=1/r, one gets

lim 1 J dt (@, [e M F(@ /1) eitH — et f(@/r) e~ itH | )
0

T—00

o “mJ du J dx (FH)(x)(@, {5 (e —1) erv HO-H
Rd

. ei%[H(—VX)—H] %( ivx- @ )}(P>

The rest of the proof consist in justifying the interchange of the

limit with the integrals...
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6 Examples

Example 6.1 (H’ constant). Suppose that H' =v € R4\ {0}. Then

e H(x) =H+ x-v is C*° and mutually commuting,
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6 Examples

Example 6.1 (H’ constant). Suppose that H' =v € R4\ {0}. Then
e H(x) =H+ x-v is C* and mutually commuting,

e kK(H) =g,

o Tf = —R]i(\)) qON

Friedrichs-type Hamiltonians H:=v-P 4+ V(Q) and Stark
Hamiltonians H := P% +v - Q with position operators ® := Q and
@ := P in L2(RY) fit into this construction.
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Example 6.2 (H' = H). Suppose, with d =1, that H(x) =e*H

(C* and mutually commuting). Then
e H =H,
e k(H)={0},
e 0..(H) =0(H)\{0} (possible eigenvalue at 0),
o Tr = —3(PR}(H) +R{(H)D).



Example 6.2 (H' = H). Suppose, with d =1, that H(x) =e*H

(C* and mutually commuting). Then
e H =H,
e k(H)={0},
e 0..(H) =0(H)\{0} (possible eigenvalue at 0),
o Tr = —3(PR}(H) +R{(H)D).

In the Hilbert space H := £*(N), the Jacobi operator

(Hp)(n) =n—-Ten—-1)+2n—-1)en) +nen +1),

and
(Pp)(n) i=—3{(m—Ten—1)—ne(n+1)}.

fit into this construction.

17-a/21
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Example 6.3 (Dirac). Consider in H := L?(R3;C*) the Dirac
operator
H:=a-P4+fm

and take the Wigner-Newton position operator

D = dZ/F_VQ, Q% rw (Zrw = Foldy-Wouthuysen transformation).
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Example 6.3 (Dirac). Consider in H := L?(R3;C*) the Dirac
operator

H:=o-P+pm

and take the Wigner-Newton position operator

D = dZ/F_VQ, Q% rw (Zrw = Foldy-Wouthuysen transformation).

Then H(x) = \/(P;‘ﬁ:;lz H s C*° and mutually commuting, and
e H/ =P;H T,
e k(H) ={xmj,
e o(H) =0,.(H) = (—00,—m] U [m, c0),

o | = %{CD .PP—2H + PP—2H . CD} when T 1s radial.
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Example 6.4 (Convolutions). Let G be a locally compact group
with a left Haar measure p. In H = 1?(G,dp) we consider

Hup =px* @ for © = bounded Radon measure on G,

and take ® = (Dq,...,Dq) with O; continuous group morphisms
from G to R.
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Example 6.4 (Convolutions). Let G be a locally compact group
with a left Haar measure p. In H = 1?(G,dp) we consider

Hup =px* @ for © = bounded Radon measure on G,

and take ® = (Dq,...,Dq) with O; continuous group morphisms
from G to R.

Suppose that w has compact support and is central, i.e.
wh='Eh) = w(E) for each h € G and each Borel subset E of G.
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Example 6.4 (Convolutions). Let G be a locally compact group
with a left Haar measure p. In H = 1?(G,dp) we consider

Hup =px* @ for © = bounded Radon measure on G,

and take ® = (Dq,...,Dq) with O; continuous group morphisms
from G to R.

Suppose that w has compact support and is central, i.e.

wh='Eh) = w(E) for each h € G and each Borel subset E of G.
Then
Hy(x) o :J du(h) e PN @hT )
G

1s C°° and mutually commuting.
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Example 6.5 (H = h(P)). Consider in H = L*(R%) the operator
H := h(P), where h € C3(R%:R) satisfies some hypoelliptic decay

assumptions, and take @ := Q.
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Example 6.5 (H = h(P)). Consider in H = L*(R%) the operator

H := h(P), where h € C3(R%:R) satisfies some hypoelliptic decay
assumptions, and take @ := Q.

Then H(x) = h(P +x) is C> and mutually commuting.
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