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1 A motivation

Free Dirac Hamiltonian H,, acting in H := L?(R>; C*) unitarily
equivalent to the operator h(P) & —h(P), where

P:=—iV  and R33&m h(E):=+E&2+m2.
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Free Dirac Hamiltonian H,, acting in H := L?(R>; C*) unitarily
equivalent to the operator h(P) & —h(P), where

P:=—iV  and R33&m h(E):=+E&2+m2.

— The set {£m} = h[(Vh)_1 ({O})} of critical values of h plays an
important role in spectral analysis and scattering theory for Dirac

operators.
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1 A motivation

Free Dirac Hamiltonian H,, acting in H := L?(R>; C*) unitarily
equivalent to the operator h(P) & —h(P), where

P:=—iV  and R33&m h(E):=+E&2+m2.

— The set {£m} = h[(Vh)_1 ({O})} of critical values of h plays an
important role in spectral analysis and scattering theory for Dirac

operators.

(We study the spectral properties of Dirac operators with non-constant
magnetic field near +m.)
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2 Unperturbed Hamiltonian
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2 Unperturbed Hamiltonian

Variable magnetic field of constant direction
B(x1,%2,x3) = (0,0, b(x1,%2))-

with b € C(R%;R).



2 Unperturbed Hamiltonian

Variable magnetic field of constant direction
B(x1,%2,x3) = (0,0, b(x1,%2))-

with b € C(R%;R).

One can choose an associated vector potential
a(x1,x2,x3) = (a1 (x1,%2), a2(x1,%2),0)

with @ € L (R2;R3).

loc
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Under these assumptions, the magnetic Dirac operator
Ho := 1 (P71 —a7)+o2(P2 —az) + a3P3s + fm

is essentially selfadjoint on C$(R3;C*).
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Under these assumptions, the magnetic Dirac operator

Ho := 1 (P1 —a1) + «2(P2 —az) + 3Pz + m

is essentially selfadjoint on C$(R3;C*).

We also have in L?(R3) ~ L?(R?) ® L?(R) the decomposition

H ®1+1®(P3+m?) 0 0
0 HT®1+1®(P5+m?) 0
0 0 H, ®@1+1®(P5+m?)
0 0 0

0
0
0
HT®1+1®(P;+m?),

where Hf are the components of the 2D Pauli operator

Hy:=H] ®H'

in L%(R?% C?).
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Under these assumptions, the magnetic Dirac operator
Ho := 1 (P71 —a7)+o2(P2 —az) + a3P3s + fm

is essentially selfadjoint on C$(R3;C*).

We also have in L?(R3) ~ L?(R?) ® L?(R) the decomposition

HT®1+1®(P5+m?) 0 0 0
0 HI®T+1®(P5+m?) 0 0
0 0 H, ®@1+1®(P5+m?) 0
0 0 0 HT®1+1®(P3+m?),

where Hf are the components of the 2D Pauli operator

Hy:=H;@®Hl in L*(R*C?).

The spectrum of Hy is

G(HO) — Gac(HO) — (_OO> _HO]U[HM OO)) Ho = \/lnf G(HL) +m?.
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3 Perturbed Hamiltonian
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3 Perturbed Hamiltonian

B, (C*) is the set of 4 x 4 hermitian matrices.
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3 Perturbed Hamiltonian

B, (C*) is the set of 4 x 4 hermitian matrices.

Assumption 3.1. The function V € C(R3;<%’h((C4)) satisfies

V(x) >0 and [V (x)] < Const. (x)~ Y, v>3.
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3 Perturbed Hamiltonian

B, (C*) is the set of 4 x 4 hermitian matrices.

Assumption 3.1. The function V € C(R3;<%’h((C4)) satisfies

V(x) >0 and [V (x)] < Const. (x)~ Y, v>3.

The perturbed Hamiltonian
H_|_ = HO _|_ V

is selfadjoint on D(H,) = D(Hy).



3 Perturbed Hamiltonian

B, (C*) is the set of 4 x 4 hermitian matrices.

Assumption 3.1. The function V € C(R3;<%’h((C4)) satisfies

V(x) >0 and [V (x)] < Const. (x)~ Y, v>3.

The perturbed Hamiltonian
H_|_ = HO _|_ V

is selfadjoint on D(H,) = D(Hy).

(All what follows is also done for H_ :=Hy —V.)

5-d,/22
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4 Spectral shift function
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4 Spectral shift function

Assumption 4.1. V s chosen such that

(Hy—2)2—(Ho—2z)"2 € S1(H) for each z € R\{o(Ho)Uo(H,)}.
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4 Spectral shift function

Assumption 4.1. V s chosen such that

(Hy—2)2—(Ho—2z)"2 € S1(H) for each z € R\{o(Ho)Uo(H,)}.

(The powers —3, instead of the usual powers —1, are a consequence of
the lower order of the symbol h(§) = /&2 +m2))
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4 Spectral shift function

Assumption 4.1. V is chosen such that

(Hy—2)2—(Ho—2z)"2 € S1(H) for each z € R\{o(Ho)Uo(H,)}.

(The powers —3, instead of the usual powers —1, are a consequence of
the lower order of the symbol h(§) = /&2 +m2))

A sufficient condition on V:

(1) ol =1V, a2l =0,

(ii) [(0¢Vjk)(x)| < Const. (x)~P, p > 3, for each j, k,€ € {1,...,4},
(iii) (0¢03Vjk) € L°(R3) for each j,k, L € {1,...,4}.
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4 Spectral shift function

Assumption 4.1. V is chosen such that

(Hy—2)2—(Ho—2z)"2 € S1(H) for each z € R\{o(Ho)Uo(H,)}.

(The powers —3, instead of the usual powers —1, are a consequence of
the lower order of the symbol h(§) = /&2 +m2))

A sufficient condition on V:

(1) ol =1V, a2l =0,

(ii) [(0¢Vjk)(x)| < Const. (x)~P, p > 3, for each j, k,€ € {1,...,4},
(iii) (0¢03Vjk) € L°(R3) for each j,k, L € {1,...,4}.

(Conditions (i) and (iii) are not necessary if V is scalar.)
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There exists a unique function &(-;Hy, Hp) € L (R; (1+ |7\|)_4d7\)
such that the Lifshits-Krein trace formula holds:

Tr [f(H2) — f(Ho)] = JR AN EHa, Ho),  F € CP(R).
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There exists a unique function &(-;Hy, Hp) € L (R; (1+ |7\|)_4d7\)

such that the Lifshits-Krein trace formula holds:

Tr [f(H2) — f(Ho)] = JR AN EHa, Ho),  F € CP(R).

e £(-;H,,Hp) vanishes on R\ {o(Hpo) U o(H, )}
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There exists a unique function &(-;Hy, Hp) € L (R; (1+ |7\|)_4d7\)
such that the Lifshits-Krein trace formula holds:

Tr [f(H2) — f(Ho)] = JR AN EHa, Ho),  F € CP(R).

e £(-;H,,Hp) vanishes on R\ {o(Hpo) U o(H, )}
e For A\, A, € (—m, m) \ o(H,) with A7 < Az, we have

&(A1;H4, Ho) — E(A2;Ho, Ho) = rank E™ (A1, A2)).
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There exists a unique function &(-;Hy, Hp) € L (R; (1+ |7\|)_4d7\)
such that the Lifshits-Krein trace formula holds:

Tr [f(H2) — f(Ho)] = JR AN EHa, Ho),  F € CP(R).

e £(-;H,,Hp) vanishes on R\ {o(Hpo) U o(H, )}
e For A\, A, € (—m, m) \ o(H,) with A7 < Az, we have

&(A1;H4, Ho) — E(A2;Ho, Ho) = rank E™ (A1, A2)).

e We have the Birman-Krein formula for almost every
A€ Gac(HO)

det S\ H.,, Ho) = e 27E(A Hy, Ho)
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5 Magnetic field

As in [Raikov09], we assume that b = by + b, where bg > 0 is
constant and b : R? — R is such that

~

AP =Db

admits a solution @ € BC*(R2:R).
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5 Magnetic field

As in [Raikov09], we assume that b = by + b, where bg > 0 is
constant and b : R? — R is such that

AP =D
admits a solution @ € BC*(R2:R).
Setting @o(x ) = %bolel2 and @ := @o + @, we obtain that
A(po = bo, A(p = b, and
ay .= —ach, ay (= 61 Q,

gives a vector potential d = (ay, az,0) for B = (0,0,b).
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5 Magnetic field

As in [Raikov09], we assume that b = by + b, where bg > 0 is
constant and b : R? — R is such that

~

Ap=D>b
admits a solution @ € BC*(R2:R).
Setting @o(x ) = %bolel2 and @ = @o + @, we obtain that
Apo = by, Ap = b, and
aj = —02¢, a := 01,
gives a vector potential d = (ay, az,0) for B = (0,0,b).

(Changing, if necessary, the gauge, we assume that d is of this form.)
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Remark 5.1. For each x| € R?, the magnetic field b satisfies

d&b(E) = bo.

lim 12 J
T—00 X1 +(—1/2,1/2)?
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Remark 5.1. For each x| € R?, the magnetic field b satisfies

lim r—

ZJ dE b(E) = bo.
00 X, +(—r/2,1/2)2

(bo can be interpreted as the mean value of b.)



10/22

Example 5.2.

~

b(x ) ::J 2 dn(&) ei‘i'xl, X| € RZ,
R

where n 18 a complex measure such that

e Ml(R?%) < oo,

o 1(B) =n(—B) for each Borel set B C R? (E is real),
e n({0}) =0,
o [ordmI(E)IE2 < co.
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Example 5.2.

~

b(x ) ::J 2 dn(&) ei‘i'xl, X| € RZ,
R

where n 18 a complex measure such that

e Ml(R?%) < oo,

o 1(B) =n(—B) for each Borel set B C RZ (b is real),
e n({0h) =0,
o [r2dMI(&) & < oo.

Then

~

L) = —j dn(E) £ 26 x, € R,
RZ

~

is a suitable solution for A = b.
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Under these assumptions, it is known that:
e 0 =info(H ) is an isolated eigenvalue of infinite multiplicity,

e there exists a constant ¢ > 0 such that (0,() C R\ o(H_).
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Under these assumptions, it is known that:
e 0 =info(H ) is an isolated eigenvalue of infinite multiplicity,

e there exists a constant ¢ > 0 such that (0,() C R\ o(H_).

In particular, we have that up = m, and thus

0-(]_lO) — GaC(HO) — (_OO> —m| U [m> OO)
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Under these assumptions, it is known that:

e 0 =info(H ) is an isolated eigenvalue of infinite multiplicity,

e there exists a constant ¢ > 0 such that (0,() C R\ o(H_).

In particular, we have that up = m, and thus

0-(]_lO) — GaC(HO) — (_OO> —m| U [m> OO)

It can be shown that

(a) &(-;Hy,Hp) is bounded on each compact subset of
(—vm? + ¢, vm? + () \ {£m]},

(b) &(-;Hy, Hp) is continuous on
(—vm? + ¢ vm? + )\ ({Fm}U op(Hy)).




12/22

6 Main theorems

The asymptotic behaviour of &(A;H,,Hp) as A — £m, with
Al < m, is given in terms of the Berezin-Toeplitz type operator

w _ ()\) = —2

m—+ A

1 /m—A\1/2
( ) pW_p,

where p is the orthogonal projection onto ker (HI), and

r

W_(x1):=| dx3zV33(x1,x3), x1 €R?
Jr

r

Wilx1): dx3 Vi1(x1,x3), x1 € R

JR
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6 Main theorems

The asymptotic behaviour of &(A;H,,Hp) as A — £m, with
Al < m, is given in terms of the Berezin-Toeplitz type operator

w _ ()\) = —2

m—+ A

1 /m—A\1/2
( ) pW_p,

where p is the orthogonal projection onto ker (HI), and

r

W_(x1):=| dx3zV33(x1,x3), x1 €R?
Jr

r

Wilx1): dx3 Vi1(x1,x3), x1 € R

JR

(The operator w_ (A) is negative and belongs to S;[L?(R?)].)
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Given T = T* a compact operator in a separable Hilbert space G, let

ny(s;T) :=rank E*' ((s,00)), s > 0.
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Given T = T* a compact operator in a separable Hilbert space G, let

ny(s;T) :=rank E*' ((s,00)), s > 0.

Theorem 6.1. Let V satisfy the assumptions. Then one has for
each € € (0,1)

O(1) <&AH4,Ho) <O(1) as A m,
and
n_(T+e&w_(A)+0(1) <ENHHo) <n_(1—gw_(A)+0(1)
as AN\, —m.
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The asymptotic behaviour of &(A;H,, Hp) as A — £+m, with
Al > m, is given in terms of a Berezin-Toeplitz type operator

1
- 2VAZ—m?2

where x| — My (x ) is a positive 8 x 8 matrix-valued function

Q) :

pMap,

defined in terms of W,.



The asymptotic behaviour of &(A;H,, Hp) as A — £+m, with
Al > m, is given in terms of a Berezin-Toeplitz type operator

1
QN = SN v pMap,

where x| — My (x ) is a positive 8 x 8 matrix-valued function

defined in terms of W,.

The operator (Q(A) is positive and satisfies

lQM) [l < (3Em) 2 [pwop]|, +

A HPW—PH1

+ (Aem)

14-a/22
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Theorem 6.2. Let V satisfy the assumptions. Then one has for
each € € (0,1)

! Trarctan [(1 - 8)_1_(1(7\” +O(1)
< &(AH4, Ho)
< 7! Trarctan [(1 — 8)_](1(7\)] + O(1)

as A — +m, |A| > m.
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Remark 6.3. One can explain the variation of E(A;H., Hy) under

the transformation A — —A\ via the charge conjugation symmetry
C:H—-H, ¢— Ucop,

where Uc :=1p ;.
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Remark 6.3. One can explain the variation of E(A;H., Hy) under

the transformation A — —A\ via the charge conjugation symmetry
C:H—-H, ¢— Ucop,
where Uc :=1px,. Namely,
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Remark 6.3. One can explain the variation of E(A;H., Hy) under

the transformation A — —A\ via the charge conjugation symmetry
C:H—H, ¢— UcHo,
where Uc :=1px,. Namely,
£(A H(d, V), Hol@)) = —&( — A H(=d, —UcVUZ ), Ho(—d)).

Roughly, the transformation A — —A\ leads to the changes:
® Ev = _Ev;
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Remark 6.4. As a corollary, we obtain the first term of the
asymptotic expansion of E(A,;Hy, Hy) near A = £m when

o W admits a power-like decay at infinity,
e W, admits an exponential decay at infinity,

e W has compact support.
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Generalised version of Levinson’s Theorem relating the eigenvalues
asymptotics of H, near £m to the scattering phase shift for the

pair (H, Ho):
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Generalised version of Levinson’s Theorem relating the eigenvalues

asymptotics of H, near £m to the scattering phase shift for the
pair (Hy, Ho):

Corollary 6.5. When W4 admits a power-like decay at infinity,
we have

: 5(—m—€§H+>HO> 1
lim = y
eNO0 E(—m—|— E;H+,H0) 2 cos (71/(\/—1))

and when Wi admats an exponential decay at infinity or has
compact support (and v >4), we have
E(—m—gHy Ho) 1

lim — _

N0 E(—m+eH Ho) 2
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Generalised version of Levinson’s Theorem relating the eigenvalues

asymptotics of H, near £m to the scattering phase shift for the
pair (Hy, Ho):

Corollary 6.5. When W4 admits a power-like decay at infinity,
we have

: 5(—m—€§H+>HO> 1
lim = y
eNO0 E(—m—|— E;H+,H0) 2 cos (71/(\/—1))

and when Wi admats an exponential decay at infinity or has
compact support (and v >4), we have
E(—m—gHy Ho) 1

lim — _

N0 E(—m+eH Ho) 2

(These values seem “independent” of the Hamiltonian...
...Bruneau/Raikov 20127)
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7 Some hints on the proofs

1. Define the weighted resolvent
T(z) :=V'"%(He—2)"'V/2 zeC\ o(Hyp),

and

A(z) := ReT(z), B(z) :=ImT(z).
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7 Some hints on the proofs

1. Define the weighted resolvent
T(z) :=V'"%(He—2)"'V/2 zeC\ o(Hyp),

and
A(z) := ReT(z), B(z) :=ImT(z).

2. For each A € (—v/m2 + {,vVmZ2 + () \ {£m}, the limits
A(A +10) := lim A(A + i¢)
e N0
and

B(A +1i0) := lim B(A + ie)
e N0

exist in suitable Schatten-von Neumann classes.
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7 Some hints on the proofs

1. Define the weighted resolvent
T(z) :=V'"%(He—2)"'V/2 zeC\ o(Hyp),

and
A(z) := ReT(z), B(z) :=ImT(z).

2. For each A € (—v/m2 + {,vVmZ2 + () \ {£m}, the limits
A(A +10) := lim A(A + i¢)
e N0
and

B(A +1i0) := lim B(A + ie)
e N0

exist in suitable Schatten-von Neumann classes.

(limiting absorption principle)
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3. Due to a general result of [PushnitskiO1], we have

1 dt
: — (1 i0) + tB(A 4 10)).
E(AH,, Ho) nLRL+ﬂ“’U”MA+“n+ (A +10))

for A € (—vm2 + ¢, vm?2 + () \ {m).
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3. Due to a general result of [PushnitskiO1], we have

1 dt . .
EAHy, Ho) = — JR o n_(1;A(A+10) + tB(A + 10)).

for A € (—vm2 + ¢, vm?2 + () \ {m).

4. Introduce the projection onto the eigenspaces of Hy for
A =+m:

(p@1 0 0 0)
0 0 0 O
P:=
0 0O p®1 0
\ 0 0 0 0
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5. Decompose T(z) as

T(z) = V"% (Ho —z) 'PV/2 4+ VI/2(Hy —2) 7' (1 = P)V/2,

4 7

"

= Taiv(2) = Thound(2)

and use the corresponding decomposition

T(A) = Taiv(A) + Toound (A)

for A € (—v/m?2 + ¢, vVm? + ) \ {+m}.
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5. Decompose T(z) as

T(z) = VV/%(Ho —2) "PVV/2 + VI/2(Hy —2) 1 (1 = P)V!/2,

7

"

= Taiv(2) = Thound(2)

and use the corresponding decomposition

T(A) = Taiv(A) + Toound (A)

for A € (—v/m?2 + ¢, vVm? + ) \ {+m}.

6. Use “integral kernel technics” to determine the asymptotic
behaviour of £(A,;H,,Hp) as A — £m.

The divergence of &(A,;H, Hpy) is due to the
Birman-Schwinger type operator Tg;, (A).
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