Asymptotics near $\pm \mathrm{m}$ of the SSF for

 Dirac operators with non-constant magnetic fieldsRafael Tiedra
(Pontificia Universidad Católica de Chile)

Grenoble, February 2011

1 A motivation

1 A motivation

Free Dirac Hamiltonian H_{m} acting in $\mathcal{H}:=\mathrm{L}^{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$ unitarily equivalent to the operator $h(P) \oplus-h(P)$, where

$$
P:=-i \nabla \quad \text { and } \quad \mathbb{R}^{3} \ni \xi \mapsto h(\xi):=\sqrt{\xi^{2}+m^{2}} .
$$

1 A motivation

Free Dirac Hamiltonian H_{m} acting in $\mathcal{H}:=L^{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$ unitarily equivalent to the operator $h(P) \oplus-h(P)$, where

$$
P:=-i \nabla \quad \text { and } \quad \mathbb{R}^{3} \ni \xi \mapsto h(\xi):=\sqrt{\xi^{2}+m^{2}} .
$$

\Longrightarrow The set $\{ \pm \mathrm{m}\}=\mathrm{h}\left[(\nabla \mathrm{h})^{-1}(\{0\})\right]$ of critical values of h plays an important role in spectral analysis and scattering theory for Dirac operators.

1 A motivation

Free Dirac Hamiltonian H_{m} acting in $\mathcal{H}:=L^{2}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$ unitarily equivalent to the operator $h(P) \oplus-h(P)$, where

$$
P:=-i \nabla \quad \text { and } \quad \mathbb{R}^{3} \ni \xi \mapsto h(\xi):=\sqrt{\xi^{2}+m^{2}} .
$$

\Longrightarrow The set $\{ \pm \mathfrak{m}\}=\mathrm{h}\left[(\nabla \mathrm{h})^{-1}(\{0\})\right]$ of critical values of h plays an important role in spectral analysis and scattering theory for Dirac operators.
(We study the spectral properties of Dirac operators with non-constant magnetic field near $\pm \mathrm{m}$.)

2 Unperturbed Hamiltonian

2 Unperturbed Hamiltonian

Variable magnetic field of constant direction

$$
\overrightarrow{\mathrm{B}}\left(\mathrm{x}_{1}, x_{2}, x_{3}\right)=\left(0,0, b\left(x_{1}, x_{2}\right)\right) .
$$

with $\mathrm{b} \in \mathrm{C}\left(\mathbb{R}^{2} ; \mathbb{R}\right)$.

2 Unperturbed Hamiltonian

Variable magnetic field of constant direction

$$
\overrightarrow{\mathrm{B}}\left(\mathrm{x}_{1}, x_{2}, x_{3}\right)=\left(0,0, b\left(x_{1}, x_{2}\right)\right) .
$$

with $\mathrm{b} \in \mathrm{C}\left(\mathbb{R}^{2} ; \mathbb{R}\right)$.

One can choose an associated vector potential

$$
\vec{a}\left(x_{1}, x_{2}, x_{3}\right)=\left(a_{1}\left(x_{1}, x_{2}\right), a_{2}\left(x_{1}, x_{2}\right), 0\right)
$$

with $\vec{a} \in \mathrm{~L}_{\text {loc }}^{\infty}\left(\mathbb{R}^{2} ; \mathbb{R}^{3}\right)$.

Under these assumptions, the magnetic Dirac operator

$$
H_{0}:=\alpha_{1}\left(P_{1}-a_{1}\right)+\alpha_{2}\left(P_{2}-a_{2}\right)+\alpha_{3} P_{3}+\beta m
$$

is essentially selfadjoint on $C_{0}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$.

Under these assumptions, the magnetic Dirac operator

$$
H_{0}:=\alpha_{1}\left(P_{1}-a_{1}\right)+\alpha_{2}\left(P_{2}-a_{2}\right)+\alpha_{3} P_{3}+\beta m
$$

is essentially selfadjoint on $C_{0}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$.
We also have in $L^{2}\left(\mathbb{R}^{3}\right) \simeq L^{2}\left(\mathbb{R}^{2}\right) \otimes L^{2}(\mathbb{R})$ the decomposition
$H_{0}^{2}=\left(\begin{array}{cccc}\mathrm{H}_{\perp}^{-} \otimes 1+1 \otimes\left(P_{3}^{2}+\mathrm{m}^{2}\right) & 0 & 0 & 0 \\ 0 & H_{\perp}^{+} \otimes 1+1 \otimes\left(P_{3}^{2}+\mathrm{m}^{2}\right) & 0 & 0 \\ 0 & 0 & H_{\perp}^{-} \otimes 1+1 \otimes\left(P_{3}^{2}+m^{2}\right) & 0 \\ 0 & 0 & 0 & H_{\perp}^{+} \otimes 1+1 \otimes\left(P_{3}^{2}+m^{2}\right),\end{array}\right)$
where $\mathrm{H}_{\perp}^{ \pm}$are the components of the 2D Pauli operator

$$
\mathrm{H}_{\perp}:=\mathrm{H}_{\perp}^{-} \oplus \mathrm{H}_{\perp}^{+} \quad \text { in } \quad \mathrm{L}^{2}\left(\mathbb{R}^{2} ; \mathbb{C}^{2}\right)
$$

Under these assumptions, the magnetic Dirac operator

$$
H_{0}:=\alpha_{1}\left(P_{1}-a_{1}\right)+\alpha_{2}\left(P_{2}-a_{2}\right)+\alpha_{3} P_{3}+\beta m
$$

is essentially selfadjoint on $C_{0}^{\infty}\left(\mathbb{R}^{3} ; \mathbb{C}^{4}\right)$.
We also have in $L^{2}\left(\mathbb{R}^{3}\right) \simeq L^{2}\left(\mathbb{R}^{2}\right) \otimes L^{2}(\mathbb{R})$ the decomposition

$$
H_{0}^{2}=\left(\begin{array}{cccc}
H_{\perp}^{-} \otimes 1+1 \otimes\left(P_{3}^{2}+m^{2}\right) & 0 & 0 & 0 \\
0 & H_{\perp}^{+} \otimes 1+1 \otimes\left(P_{3}^{2}+m^{2}\right) & 0 & 0 \\
0 & 0 & H_{\perp}^{-} \otimes 1+1 \otimes\left(P_{3}^{2}+m^{2}\right) & 0 \\
0 & 0 & 0 & H_{\perp}^{+} \otimes 1+1 \otimes\left(P_{3}^{2}+m^{2}\right),
\end{array}\right)
$$

where $\mathrm{H}_{\perp}^{ \pm}$are the components of the 2D Pauli operator

$$
\mathrm{H}_{\perp}:=\mathrm{H}_{\perp}^{-} \oplus \mathrm{H}_{\perp}^{+} \quad \text { in } \quad \mathrm{L}^{2}\left(\mathbb{R}^{2} ; \mathbb{C}^{2}\right)
$$

The spectrum of H_{0} is

$$
\sigma\left(\mathrm{H}_{0}\right)=\sigma_{\mathrm{ac}}\left(\mathrm{H}_{0}\right)=\left(-\infty,-\mu_{0}\right] \cup\left[\mu_{0}, \infty\right), \quad \mu_{0}:=\sqrt{\inf \sigma\left(\mathrm{H}_{\perp}\right)+\mathrm{m}^{2}}
$$

3 Perturbed Hamiltonian

3 Perturbed Hamiltonian

$\mathscr{B}_{\mathrm{h}}\left(\mathbb{C}^{4}\right)$ is the set of 4×4 hermitian matrices.

3 Perturbed Hamiltonian

$\mathscr{B}_{\mathrm{h}}\left(\mathbb{C}^{4}\right)$ is the set of 4×4 hermitian matrices.
Assumption 3.1. The function $\mathrm{V} \in \mathrm{C}\left(\mathbb{R}^{3} ; \mathscr{B}_{\mathrm{h}}\left(\mathbb{C}^{4}\right)\right)$ satisfies

$$
V(x) \geq 0 \quad \text { and } \quad\left|V_{j k}(x)\right| \leq \text { Const. }\langle x\rangle^{-v}, \quad v>3 .
$$

3 Perturbed Hamiltonian

$\mathscr{B}_{\mathrm{h}}\left(\mathbb{C}^{4}\right)$ is the set of 4×4 hermitian matrices.
Assumption 3.1. The function $\mathrm{V} \in \mathrm{C}\left(\mathbb{R}^{3} ; \mathscr{B}_{\mathrm{h}}\left(\mathbb{C}^{4}\right)\right)$ satisfies

$$
V(x) \geq 0 \quad \text { and } \quad\left|V_{j k}(x)\right| \leq \text { Const. }\langle x\rangle^{-v}, \quad v>3 .
$$

The perturbed Hamiltonian

$$
\mathrm{H}_{+}:=\mathrm{H}_{0}+\mathrm{V}
$$

is selfadjoint on $\mathcal{D}\left(\mathrm{H}_{+}\right)=\mathcal{D}\left(\mathrm{H}_{0}\right)$.

3 Perturbed Hamiltonian

$\mathscr{B}_{\mathrm{h}}\left(\mathbb{C}^{4}\right)$ is the set of 4×4 hermitian matrices.
Assumption 3.1. The function $\mathrm{V} \in \mathrm{C}\left(\mathbb{R}^{3} ; \mathscr{B}_{\mathrm{h}}\left(\mathbb{C}^{4}\right)\right)$ satisfies

$$
\mathrm{V}(\mathrm{x}) \geq 0 \quad \text { and } \quad\left|\mathrm{V}_{\mathrm{jk}}(\mathrm{x})\right| \leq \text { Const. }\langle\mathrm{x}\rangle^{-v}, \quad v>3
$$

The perturbed Hamiltonian

$$
\mathrm{H}_{+}:=\mathrm{H}_{0}+\mathrm{V}
$$

is selfadjoint on $\mathcal{D}\left(\mathrm{H}_{+}\right)=\mathcal{D}\left(\mathrm{H}_{0}\right)$.
(All what follows is also done for $\mathrm{H}_{-}:=\mathrm{H}_{0}-\mathrm{V}$.)

4 Spectral shift function

4 Spectral shift function

Assumption 4.1. V is chosen such that
$\left(\mathrm{H}_{+}-z\right)^{-3}-\left(\mathrm{H}_{0}-z\right)^{-3} \in \mathrm{~S}_{1}(\mathcal{H}) \quad$ for each $z \in \mathbb{R} \backslash\left\{\sigma\left(\mathrm{H}_{0}\right) \cup \sigma\left(\mathrm{H}_{+}\right)\right\}$.

4 Spectral shift function

Assumption 4.1. V is chosen such that
$\left(\mathrm{H}_{+}-z\right)^{-3}-\left(\mathrm{H}_{0}-z\right)^{-3} \in \mathrm{~S}_{1}(\mathcal{H}) \quad$ for each $z \in \mathbb{R} \backslash\left\{\sigma\left(\mathrm{H}_{0}\right) \cup \sigma\left(\mathrm{H}_{+}\right)\right\}$.
(The powers -3 , instead of the usual powers -1 , are a consequence of the lower order of the symbol $h(\xi)=\sqrt{\xi^{2}+m^{2}}$.)

4 Spectral shift function

Assumption 4.1. V is chosen such that
$\left(\mathrm{H}_{+}-z\right)^{-3}-\left(\mathrm{H}_{0}-z\right)^{-3} \in \mathrm{~S}_{1}(\mathcal{H}) \quad$ for each $z \in \mathbb{R} \backslash\left\{\sigma\left(\mathrm{H}_{0}\right) \cup \sigma\left(\mathrm{H}_{+}\right)\right\}$.
(The powers -3 , instead of the usual powers -1 , are a consequence of the lower order of the symbol $h(\xi)=\sqrt{\xi^{2}+m^{2}}$.)

A sufficient condition on V :
(i) $\left[\mathrm{V}, \alpha_{1}\right]=\left[\mathrm{V}, \alpha_{2}\right]=0$,
(ii) $\left|\left(\partial_{\ell} \bigvee_{j k}\right)(x)\right| \leq$ Const. $\langle x\rangle^{-\rho}, \rho>3$, for each $j, k, \ell \in\{1, \ldots, 4\}$,
(iii) $\left(\partial_{\ell} \partial_{3} V_{j k}\right) \in L^{\infty}\left(\mathbb{R}^{3}\right)$ for each $j, k, \ell \in\{1, \ldots, 4\}$.

4 Spectral shift function

Assumption 4.1. V is chosen such that
$\left(\mathrm{H}_{+}-z\right)^{-3}-\left(\mathrm{H}_{0}-z\right)^{-3} \in \mathrm{~S}_{1}(\mathcal{H}) \quad$ for each $z \in \mathbb{R} \backslash\left\{\sigma\left(\mathrm{H}_{0}\right) \cup \sigma\left(\mathrm{H}_{+}\right)\right\}$.
(The powers -3 , instead of the usual powers -1 , are a consequence of the lower order of the symbol $h(\xi)=\sqrt{\xi^{2}+m^{2}}$.)

A sufficient condition on V :
(i) $\left[\mathrm{V}, \alpha_{1}\right]=\left[\mathrm{V}, \alpha_{2}\right]=0$,
(ii) $\left|\left(\partial_{\ell} \bigvee_{j k}\right)(x)\right| \leq$ Const. $\langle x\rangle^{-\rho}, \rho>3$, for each $j, k, \ell \in\{1, \ldots, 4\}$,
(iii) $\left(\partial_{\ell} \partial_{3} V_{j k}\right) \in L^{\infty}\left(\mathbb{R}^{3}\right)$ for each $j, k, \ell \in\{1, \ldots, 4\}$.
(Conditions (i) and (iii) are not necessary if V is scalar.)

There exists a unique function $\xi\left(\cdot ; \mathrm{H}_{+}, \mathrm{H}_{0}\right) \in \mathrm{L}^{1}\left(\mathbb{R} ;(1+|\lambda|)^{-4} \mathrm{~d} \lambda\right)$ such that the Lifshits-Krein trace formula holds:

$$
\operatorname{Tr}\left[f\left(H_{+}\right)-f\left(H_{0}\right)\right]=\int_{\mathbb{R}} d \lambda f^{\prime}(\lambda) \xi\left(\lambda ; H_{+}, H_{0}\right), \quad f \in C_{0}^{\infty}(\mathbb{R})
$$

There exists a unique function $\xi\left(\cdot ; H_{+}, H_{0}\right) \in L^{1}\left(\mathbb{R} ;(1+|\lambda|)^{-4} d \lambda\right)$ such that the Lifshits-Krein trace formula holds:

$$
\operatorname{Tr}\left[f\left(H_{+}\right)-f\left(H_{0}\right)\right]=\int_{\mathbb{R}} d \lambda f^{\prime}(\lambda) \xi\left(\lambda ; H_{+}, H_{0}\right), \quad f \in C_{0}^{\infty}(\mathbb{R})
$$

- $\xi\left(\cdot ; \mathrm{H}_{+}, \mathrm{H}_{0}\right)$ vanishes on $\mathbb{R} \backslash\left\{\sigma\left(\mathrm{H}_{0}\right) \cup \sigma\left(\mathrm{H}_{+}\right)\right\}$.

There exists a unique function $\xi\left(\cdot ; \mathrm{H}_{+}, \mathrm{H}_{0}\right) \in \mathrm{L}^{1}\left(\mathbb{R} ;(1+|\lambda|)^{-4} \mathrm{~d} \lambda\right)$ such that the Lifshits-Krein trace formula holds:

$$
\operatorname{Tr}\left[f\left(H_{+}\right)-f\left(H_{0}\right)\right]=\int_{\mathbb{R}} d \lambda f^{\prime}(\lambda) \xi\left(\lambda ; H_{+}, H_{0}\right), \quad f \in C_{0}^{\infty}(\mathbb{R})
$$

- $\xi\left(\cdot ; \mathrm{H}_{+}, \mathrm{H}_{0}\right)$ vanishes on $\mathbb{R} \backslash\left\{\sigma\left(\mathrm{H}_{0}\right) \cup \sigma\left(\mathrm{H}_{+}\right)\right\}$.
- For $\lambda_{1}, \lambda_{2} \in(-m, m) \backslash \sigma\left(H_{+}\right)$with $\lambda_{1}<\lambda_{2}$, we have

$$
\xi\left(\lambda_{1} ; H_{+}, H_{0}\right)-\xi\left(\lambda_{2} ; H_{+}, H_{0}\right)=\operatorname{rank} E^{H_{+}}\left(\left[\lambda_{1}, \lambda_{2}\right)\right) .
$$

There exists a unique function $\xi\left(\cdot ; \mathrm{H}_{+}, \mathrm{H}_{0}\right) \in \mathrm{L}^{1}\left(\mathbb{R} ;(1+|\lambda|)^{-4} \mathrm{~d} \lambda\right)$ such that the Lifshits-Krein trace formula holds:

$$
\operatorname{Tr}\left[f\left(H_{+}\right)-f\left(H_{0}\right)\right]=\int_{\mathbb{R}} d \lambda f^{\prime}(\lambda) \xi\left(\lambda ; H_{+}, H_{0}\right), \quad f \in C_{0}^{\infty}(\mathbb{R})
$$

- $\xi\left(\cdot ; \mathrm{H}_{+}, \mathrm{H}_{0}\right)$ vanishes on $\mathbb{R} \backslash\left\{\sigma\left(\mathrm{H}_{0}\right) \cup \sigma\left(\mathrm{H}_{+}\right)\right\}$.
- For $\lambda_{1}, \lambda_{2} \in(-m, m) \backslash \sigma\left(H_{+}\right)$with $\lambda_{1}<\lambda_{2}$, we have

$$
\xi\left(\lambda_{1} ; H_{+}, H_{0}\right)-\xi\left(\lambda_{2} ; H_{+}, H_{0}\right)=\operatorname{rank} E^{H_{+}}\left(\left[\lambda_{1}, \lambda_{2}\right)\right) .
$$

- We have the Birman-Krein formula for almost every $\lambda \in \sigma_{\mathrm{ac}}\left(\mathrm{H}_{0}\right)$

$$
\operatorname{det} S\left(\lambda ; H_{+}, H_{0}\right)=e^{-2 \pi i \xi\left(\lambda ; H_{+}, H_{0}\right)}
$$

5 Magnetic field

As in [Raikov09], we assume that $b=b_{0}+\widetilde{b}$, where $b_{0}>0$ is constant and $\widetilde{\mathrm{b}}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is such that

$$
\Delta \widetilde{\varphi}=\widetilde{\mathrm{b}}
$$

admits a solution $\widetilde{\varphi} \in \mathrm{BC}^{2}\left(\mathbb{R}^{2} ; \mathbb{R}\right)$.

5 Magnetic field

As in [Raikov09], we assume that $b=b_{0}+\widetilde{b}$, where $b_{0}>0$ is constant and $\widetilde{\mathrm{b}}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is such that

$$
\Delta \widetilde{\varphi}=\widetilde{\mathrm{b}}
$$

admits a solution $\widetilde{\varphi} \in \mathrm{BC}^{2}\left(\mathbb{R}^{2} ; \mathbb{R}\right)$.

Setting $\varphi_{0}\left(x_{\perp}\right):=\frac{1}{4} b_{0}\left|x_{\perp}\right|^{2}$ and $\varphi:=\varphi_{0}+\widetilde{\varphi}$, we obtain that
$\Delta \varphi_{0}=\mathrm{b}_{0}, \Delta \varphi=\mathrm{b}$, and

$$
a_{1}:=-\partial_{2} \varphi, \quad a_{2}:=\partial_{1} \varphi,
$$

gives a vector potential $\vec{a} \equiv\left(a_{1}, a_{2}, 0\right)$ for $\vec{B} \equiv(0,0, b)$.

5 Magnetic field

As in [Raikov09], we assume that $b=b_{0}+\widetilde{b}$, where $b_{0}>0$ is constant and $\widetilde{\mathrm{b}}: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is such that

$$
\Delta \widetilde{\varphi}=\widetilde{\mathrm{b}}
$$

admits a solution $\widetilde{\varphi} \in \mathrm{BC}^{2}\left(\mathbb{R}^{2} ; \mathbb{R}\right)$.

Setting $\varphi_{0}\left(x_{\perp}\right):=\frac{1}{4} b_{0}\left|x_{\perp}\right|^{2}$ and $\varphi:=\varphi_{0}+\widetilde{\varphi}$, we obtain that
$\Delta \varphi_{0}=b_{0}, \Delta \varphi=\mathrm{b}$, and

$$
a_{1}:=-\partial_{2} \varphi, \quad a_{2}:=\partial_{1} \varphi,
$$

gives a vector potential $\vec{a} \equiv\left(a_{1}, a_{2}, 0\right)$ for $\vec{B} \equiv(0,0, b)$.
(Changing, if necessary, the gauge, we assume that \vec{a} is of this form.)

Remark 5.1. For each $x_{\perp} \in \mathbb{R}^{2}$, the magnetic field b satisfies

$$
\lim _{r \rightarrow \infty} r^{-2} \int_{x_{\perp}+(-r / 2, r / 2)^{2}} d \xi b(\xi)=b_{0}
$$

Remark 5.1. For each $x_{\perp} \in \mathbb{R}^{2}$, the magnetic field b satisfies

$$
\lim _{r \rightarrow \infty} r^{-2} \int_{x_{\perp}+(-r / 2, r / 2)^{2}} d \xi b(\xi)=b_{0}
$$

(b_{0} can be interpreted as the mean value of b.)

Example 5.2.

$$
\widetilde{\mathfrak{b}}\left(x_{\perp}\right):=\int_{\mathbb{R}^{2}} d \eta(\xi) \mathrm{e}^{\mathrm{i} \xi \cdot x_{\perp}}, \quad x_{\perp} \in \mathbb{R}^{2}
$$

where η is a complex measure such that

- $|\boldsymbol{\eta}|\left(\mathbb{R}^{2}\right)<\infty$,
- $\eta(\mathcal{B})=\overline{\eta(-\mathcal{B})}$ for each Borel set $\mathcal{B} \subset \mathbb{R}^{2}$ ($\widetilde{\mathrm{b}}$ is real),
- $\eta(\{0\})=0$,
- $\int_{\mathbb{R}^{2}} \mathrm{~d}|\boldsymbol{\eta}|(\xi)|\xi|^{-2}<\infty$.

Example 5.2.

$$
\widetilde{\mathfrak{b}}\left(x_{\perp}\right):=\int_{\mathbb{R}^{2}} d \eta(\xi) \mathrm{e}^{\mathrm{i} \xi \cdot x_{\perp}}, \quad x_{\perp} \in \mathbb{R}^{2},
$$

where η is a complex measure such that

- $|\boldsymbol{\eta}|\left(\mathbb{R}^{2}\right)<\infty$,
- $\eta(\mathcal{B})=\overline{\eta(-\mathcal{B})}$ for each Borel set $\mathcal{B} \subset \mathbb{R}^{2} \quad$ (\widetilde{b} is real),
- $\eta(\{0\})=0$,
- $\int_{\mathbb{R}^{2}} \mathrm{~d}|\boldsymbol{\eta}|(\xi)|\xi|^{-2}<\infty$.

Then

$$
\widetilde{\varphi}\left(x_{\perp}\right):=-\int_{\mathbb{R}^{2}} d \eta(\xi)|\xi|^{-2} e^{i \xi \cdot x_{\perp}}, \quad x_{\perp} \in \mathbb{R}^{2}
$$

is a suitable solution for $\Delta \widetilde{\varphi}=\widetilde{\mathrm{b}}$.

Under these assumptions, it is known that:

- $0=\inf \sigma\left(\mathrm{H}_{\perp}\right)$ is an isolated eigenvalue of infinite multiplicity,
- there exists a constant $\zeta>0$ such that $(0, \zeta) \subset \mathbb{R} \backslash \sigma\left(\mathrm{H}_{\perp}\right)$.

Under these assumptions, it is known that:

- $0=\inf \sigma\left(\mathrm{H}_{\perp}\right)$ is an isolated eigenvalue of infinite multiplicity,
- there exists a constant $\zeta>0$ such that $(0, \zeta) \subset \mathbb{R} \backslash \sigma\left(\mathrm{H}_{\perp}\right)$.

In particular, we have that $\mu_{0}=m$, and thus

$$
\sigma\left(\mathrm{H}_{0}\right)=\sigma_{\mathrm{ac}}\left(\mathrm{H}_{0}\right)=(-\infty,-\mathrm{m}] \cup[\mathrm{m}, \infty)
$$

Under these assumptions, it is known that:

- $0=\inf \sigma\left(\mathrm{H}_{\perp}\right)$ is an isolated eigenvalue of infinite multiplicity,
- there exists a constant $\zeta>0$ such that $(0, \zeta) \subset \mathbb{R} \backslash \sigma\left(\mathrm{H}_{\perp}\right)$.

In particular, we have that $\mu_{0}=m$, and thus

$$
\sigma\left(\mathrm{H}_{0}\right)=\sigma_{\mathrm{ac}}\left(\mathrm{H}_{0}\right)=(-\infty,-\mathrm{m}] \cup[\mathrm{m}, \infty)
$$

It can be shown that
(a) $\xi\left(\cdot ; H_{+}, H_{0}\right)$ is bounded on each compact subset of $\left(-\sqrt{m^{2}+\zeta}, \sqrt{m^{2}+\zeta}\right) \backslash\{ \pm m\}$,
(b) $\xi\left(\cdot ; \mathrm{H}_{+}, \mathrm{H}_{0}\right)$ is continuous on

$$
\left(-\sqrt{m^{2}+\zeta}, \sqrt{m^{2}+\zeta}\right) \backslash\left(\{ \pm m\} \cup \sigma_{p}\left(H_{+}\right)\right) .
$$

6 Main theorems

The asymptotic behaviour of $\xi\left(\lambda ; H_{+}, H_{0}\right)$ as $\lambda \rightarrow \pm$, with $|\lambda|<\mathfrak{m}$, is given in terms of the Berezin-Toeplitz type operator

$$
\omega_{-}(\lambda):=-\frac{1}{2}\left(\frac{m-\lambda}{m+\lambda}\right)^{1 / 2} p W_{-} p
$$

where p is the orthogonal projection onto $\operatorname{ker}\left(\mathrm{H}_{\perp}^{-}\right)$, and

$$
\begin{array}{ll}
W_{-}\left(x_{\perp}\right):=\int_{\mathbb{R}} d x_{3} V_{33}\left(x_{\perp}, x_{3}\right), & x_{\perp} \in \mathbb{R}^{2} \\
W_{+}\left(x_{\perp}\right):=\int_{\mathbb{R}} d x_{3} V_{11}\left(x_{\perp}, x_{3}\right), & x_{\perp} \in \mathbb{R}^{2}
\end{array}
$$

6 Main theorems

The asymptotic behaviour of $\xi\left(\lambda ; H_{+}, H_{0}\right)$ as $\lambda \rightarrow \pm$, with $|\lambda|<\mathfrak{m}$, is given in terms of the Berezin-Toeplitz type operator

$$
\omega_{-}(\lambda):=-\frac{1}{2}\left(\frac{m-\lambda}{m+\lambda}\right)^{1 / 2} p W_{-} p
$$

where p is the orthogonal projection onto $\operatorname{ker}\left(\mathrm{H}_{\perp}^{-}\right)$, and

$$
\begin{array}{ll}
W_{-}\left(x_{\perp}\right):=\int_{\mathbb{R}} d x_{3} V_{33}\left(x_{\perp}, x_{3}\right), & x_{\perp} \in \mathbb{R}^{2} \\
W_{+}\left(x_{\perp}\right):=\int_{\mathbb{R}} d x_{3} V_{11}\left(x_{\perp}, x_{3}\right), & x_{\perp} \in \mathbb{R}^{2}
\end{array}
$$

(The operator $\omega_{-}(\lambda)$ is negative and belongs to $S_{1}\left[L^{2}\left(\mathbb{R}^{2}\right)\right]$.)

Given $\mathrm{T}=\mathrm{T}^{*}$ a compact operator in a separable Hilbert space \mathcal{G}, let

$$
\mathrm{n}_{ \pm}(\mathrm{s} ; \mathrm{T}):=\operatorname{rank} \mathrm{E}^{ \pm \mathrm{T}}((\mathrm{~s}, \infty)), \quad \mathrm{s}>0
$$

Given $\mathrm{T}=\mathrm{T}^{*}$ a compact operator in a separable Hilbert space \mathcal{G}, let

$$
\mathrm{n}_{ \pm}(\mathrm{s} ; \mathrm{T}):=\operatorname{rank} \mathrm{E}^{ \pm \mathrm{T}}((\mathrm{~s}, \infty)), \quad \mathrm{s}>0
$$

Theorem 6.1. Let V satisfy the assumptions. Then one has for each $\varepsilon \in(0,1)$

$$
\mathcal{O}(1) \leq \xi\left(\lambda ; \mathrm{H}_{+}, \mathrm{H}_{0}\right) \leq \mathcal{O}(1) \quad \text { as } \quad \lambda \nearrow \mathrm{m}
$$

and
$n_{-}\left(1+\varepsilon ; \omega_{-}(\lambda)\right)+\mathcal{O}(1) \leq \xi\left(\lambda ; H_{+}, H_{0}\right) \leq n_{-}\left(1-\varepsilon ; \omega_{-}(\lambda)\right)+\mathcal{O}(1)$ as $\lambda \searrow-\mathrm{m}$.

The asymptotic behaviour of $\xi\left(\lambda ; H_{+}, H_{0}\right)$ as $\lambda \rightarrow \pm \mathbf{m}$, with $|\lambda|>\mathfrak{m}$, is given in terms of a Berezin-Toeplitz type operator

$$
\Omega(\lambda):=\frac{1}{2 \sqrt{\lambda^{2}-m^{2}}} p M_{\lambda} p
$$

where $x_{\perp} \mapsto M_{\lambda}\left(x_{\perp}\right)$ is a positive 8×8 matrix-valued function defined in terms of $W_{ \pm}$.

The asymptotic behaviour of $\xi\left(\lambda ; H_{+}, H_{0}\right)$ as $\lambda \rightarrow \pm m$, with $|\lambda|>\mathfrak{m}$, is given in terms of a Berezin-Toeplitz type operator

$$
\Omega(\lambda):=\frac{1}{2 \sqrt{\lambda^{2}-m^{2}}} \mathrm{pM}_{\lambda} p
$$

where $x_{\perp} \mapsto M_{\lambda}\left(x_{\perp}\right)$ is a positive 8×8 matrix-valued function defined in terms of $W_{ \pm}$.

The operator $\Omega(\lambda)$ is positive and satisfies

$$
\|\Omega(\lambda)\|_{1} \leq\left(\frac{\lambda+m}{\lambda-m}\right)^{1 / 2}\left\|p W_{+} p\right\|_{1}+\left(\frac{\lambda-m}{\lambda+m}\right)^{1 / 2}\left\|p W_{-} p\right\|_{1}
$$

Theorem 6.2. Let V satisfy the assumptions. Then one has for each $\varepsilon \in(0,1)$

$$
\begin{aligned}
& \pi^{-1} \operatorname{Tr} \arctan \left[(1+\varepsilon)^{-1} \Omega(\lambda)\right]+\mathcal{O}(1) \\
& \quad \leq \xi\left(\lambda ; H_{+}, H_{0}\right) \\
& \quad \leq \pi^{-1} \operatorname{Tr} \arctan \left[(1-\varepsilon)^{-1} \Omega(\lambda)\right]+\mathcal{O}(1)
\end{aligned}
$$

as $\lambda \rightarrow \pm \mathrm{m},|\lambda|>\mathrm{m}$.

Remark 6.3. One can explain the variation of $\xi\left(\lambda ; \mathrm{H}_{+}, \mathrm{H}_{0}\right)$ under the transformation $\lambda \mapsto-\lambda$ via the charge conjugation symmetry

$$
\mathrm{C}: \mathcal{H} \rightarrow \mathcal{H}, \quad \varphi \mapsto \mathrm{U}_{\mathrm{C}} \bar{\varphi}
$$

where $\mathrm{U}_{\mathrm{C}}:=\mathfrak{i} \beta \alpha_{2}$.

Remark 6.3. One can explain the variation of $\xi\left(\lambda ; \mathrm{H}_{+}, \mathrm{H}_{0}\right)$ under the transformation $\lambda \mapsto-\lambda$ via the charge conjugation symmetry

$$
\mathrm{C}: \mathcal{H} \rightarrow \mathcal{H}, \quad \varphi \mapsto \mathrm{U}_{\mathrm{C}} \bar{\varphi}
$$

where $\mathrm{U}_{\mathrm{C}}:=\mathfrak{i} \beta \alpha_{2}$. Namely,

$$
\xi\left(\lambda ; H(\vec{a}, V), H_{0}(\vec{a})\right)=-\xi\left(-\lambda ; H\left(-\vec{a},-U_{C} \bar{V} U_{C}^{*}\right), H_{0}(-\vec{a})\right) .
$$

Remark 6.3. One can explain the variation of $\xi\left(\lambda ; \mathrm{H}_{+}, \mathrm{H}_{0}\right)$ under the transformation $\lambda \mapsto-\lambda$ via the charge conjugation symmetry

$$
\mathrm{C}: \mathcal{H} \rightarrow \mathcal{H}, \quad \varphi \mapsto \mathrm{U}_{\mathrm{C}} \bar{\varphi}
$$

where $\mathrm{U}_{\mathrm{C}}:=\mathfrak{i} \beta \alpha_{2}$. Namely,

$$
\xi\left(\lambda ; H(\vec{a}, V), H_{0}(\vec{a})\right)=-\xi\left(-\lambda ; H\left(-\vec{a},-U_{C} \bar{V} U_{C}^{*}\right), H_{0}(-\vec{a})\right) .
$$

Roughly, the transformation $\lambda \mapsto-\lambda$ leads to the changes:

- $\xi \mapsto-\xi$,
- $\vec{a} \mapsto-\vec{a}$,
- $\left(\mathrm{V}_{11}, \mathrm{~V}_{33}\right) \mapsto-\left(\mathrm{V}_{33}, \mathrm{~V}_{11}\right)$.

Remark 6.4. As a corollary, we obtain the first term of the asymptotic expansion of $\xi\left(\lambda, ; \mathrm{H}_{+}, \mathrm{H}_{0}\right)$ near $\lambda= \pm \mathfrak{m}$ when

- $\mathrm{W}_{ \pm}$admits a power-like decay at infinity,
- $W_{ \pm}$admits an exponential decay at infinity,
- $\mathrm{W}_{ \pm}$has compact support.

Generalised version of Levinson's Theorem relating the eigenvalues asymptotics of H_{+}near $\pm \mathrm{m}$ to the scattering phase shift for the pair $\left(\mathrm{H}_{+}, \mathrm{H}_{0}\right)$:

Generalised version of Levinson's Theorem relating the eigenvalues asymptotics of H_{+}near $\pm \mathrm{m}$ to the scattering phase shift for the pair $\left(H_{+}, H_{0}\right)$:

Corollary 6.5. When $\mathrm{W}_{ \pm}$admits a power-like decay at infinity, we have

$$
\lim _{\varepsilon \searrow 0} \frac{\xi\left(-m-\varepsilon ; H_{+}, H_{0}\right)}{\xi\left(-m+\varepsilon ; H_{+}, H_{0}\right)}=\frac{1}{2 \cos (\pi /(v-1))}
$$

and when $\mathrm{W}_{ \pm}$admits an exponential decay at infinity or has compact support (and $v>4$), we have

$$
\lim _{\varepsilon \searrow 0} \frac{\xi\left(-m-\varepsilon ; H_{+}, H_{0}\right)}{\xi\left(-m+\varepsilon ; H_{+}, H_{0}\right)}=\frac{1}{2}
$$

Generalised version of Levinson's Theorem relating the eigenvalues asymptotics of H_{+}near $\pm \mathrm{m}$ to the scattering phase shift for the pair $\left(H_{+}, H_{0}\right)$:

Corollary 6.5. When $\mathrm{W}_{ \pm}$admits a power-like decay at infinity, we have

$$
\lim _{\varepsilon \searrow 0} \frac{\xi\left(-m-\varepsilon ; H_{+}, H_{0}\right)}{\xi\left(-m+\varepsilon ; H_{+}, H_{0}\right)}=\frac{1}{2 \cos (\pi /(v-1))}
$$

and when $\mathrm{W}_{ \pm}$admits an exponential decay at infinity or has compact support (and $v>4$), we have

$$
\lim _{\varepsilon \searrow 0} \frac{\xi\left(-m-\varepsilon ; H_{+}, H_{0}\right)}{\xi\left(-m+\varepsilon ; H_{+}, H_{0}\right)}=\frac{1}{2}
$$

(These values seem "independent" of the Hamiltonian...
...Bruneau/Raikov 2012?)

7 Some hints on the proofs

1. Define the weighted resolvent

$$
\mathrm{T}(z):=\mathrm{V}^{1 / 2}\left(\mathrm{H}_{0}-z\right)^{-1} \mathrm{~V}^{1 / 2}, \quad z \in \mathbb{C} \backslash \sigma\left(\mathrm{H}_{0}\right)
$$

and

$$
A(z):=\operatorname{ReT}(z), \quad B(z):=\operatorname{Im} T(z)
$$

7 Some hints on the proofs

1. Define the weighted resolvent

$$
\mathrm{T}(z):=\mathrm{V}^{1 / 2}\left(\mathrm{H}_{0}-z\right)^{-1} \mathrm{~V}^{1 / 2}, \quad z \in \mathbb{C} \backslash \sigma\left(\mathrm{H}_{0}\right)
$$

and

$$
A(z):=\operatorname{Re} T(z), \quad B(z):=\operatorname{Im} T(z)
$$

2. For each $\lambda \in\left(-\sqrt{m^{2}+\zeta}, \sqrt{m^{2}+\zeta}\right) \backslash\{ \pm m\}$, the limits

$$
A(\lambda+\mathfrak{i} 0):=\lim _{\varepsilon \searrow 0} A(\lambda+\mathfrak{i} \varepsilon)
$$

and

$$
\mathrm{B}(\lambda+i 0):=\lim _{\varepsilon \searrow 0} \mathrm{~B}(\lambda+\mathfrak{i} \varepsilon)
$$

exist in suitable Schatten-von Neumann classes.

7 Some hints on the proofs

1. Define the weighted resolvent

$$
\mathrm{T}(z):=\mathrm{V}^{1 / 2}\left(\mathrm{H}_{0}-z\right)^{-1} \mathrm{~V}^{1 / 2}, \quad z \in \mathbb{C} \backslash \sigma\left(\mathrm{H}_{0}\right)
$$

and

$$
A(z):=\operatorname{ReT}(z), \quad B(z):=\operatorname{Im} T(z)
$$

2. For each $\lambda \in\left(-\sqrt{m^{2}+\zeta}, \sqrt{m^{2}+\zeta}\right) \backslash\{ \pm m\}$, the limits

$$
A(\lambda+\mathfrak{i} 0):=\lim _{\varepsilon \searrow 0} A(\lambda+\mathfrak{i} \varepsilon)
$$

and

$$
\mathrm{B}(\lambda+i 0):=\lim _{\varepsilon \searrow 0} \mathrm{~B}(\lambda+\mathfrak{i} \varepsilon)
$$

exist in suitable Schatten-von Neumann classes.
(limiting absorption principle)
3. Due to a general result of [Pushnitski01], we have

$$
\begin{aligned}
& \qquad \xi\left(\lambda ; H_{+}, H_{0}\right)=\frac{1}{\pi} \int_{\mathbb{R}} \frac{d t}{1+t^{2}} n_{-}(1 ; A(\lambda+i 0)+\mathrm{tB}(\lambda+i 0)) . \\
& \text { for } \lambda \in\left(-\sqrt{m^{2}+\zeta}, \sqrt{m^{2}+\zeta}\right) \backslash\{ \pm m\} .
\end{aligned}
$$

3. Due to a general result of [Pushnitski01], we have

$$
\xi\left(\lambda ; H_{+}, H_{0}\right)=\frac{1}{\pi} \int_{\mathbb{R}} \frac{\mathrm{dt}}{1+\mathrm{t}^{2}} \mathrm{n}_{-}(1 ; A(\lambda+\mathfrak{i} 0)+\mathrm{tB}(\lambda+\mathfrak{i} 0)) .
$$

for $\lambda \in\left(-\sqrt{m^{2}+\zeta}, \sqrt{m^{2}+\zeta}\right) \backslash\{ \pm m\}$.
4. Introduce the projection onto the eigenspaces of H_{0} for $\lambda= \pm m$:

$$
P:=\left(\begin{array}{cccc}
p \otimes 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & p \otimes 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) .
$$

5. Decompose $\mathrm{T}(z)$ as

$$
\mathrm{T}(z)=\underbrace{\mathrm{V}^{1 / 2}\left(\mathrm{H}_{0}-z\right)^{-1} \mathrm{PV} \mathrm{~V}^{1 / 2}}_{\equiv \mathrm{T}_{\operatorname{div}}(z)}+\underbrace{\mathrm{V}^{1 / 2}\left(\mathrm{H}_{0}-z\right)^{-1}(1-\mathrm{P}) \mathrm{V}^{1 / 2}}_{\equiv \mathrm{T}_{\text {bound }}(z)}
$$

and use the corresponding decomposition

$$
\mathrm{T}(\lambda)=\mathrm{T}_{\mathrm{div}}(\lambda)+\mathrm{T}_{\text {bound }}(\lambda)
$$

for $\lambda \in\left(-\sqrt{m^{2}+\zeta}, \sqrt{m^{2}+\zeta}\right) \backslash\{ \pm m\}$.
5. Decompose $\mathrm{T}(z)$ as

$$
\mathrm{T}(z)=\underbrace{\mathrm{V}^{1 / 2}\left(\mathrm{H}_{0}-z\right)^{-1} \mathrm{PV} \mathrm{~V}^{1 / 2}}_{\equiv \mathrm{T}_{\operatorname{div}}(z)}+\underbrace{\mathrm{V}^{1 / 2}\left(\mathrm{H}_{0}-z\right)^{-1}(1-\mathrm{P}) \mathrm{V}^{1 / 2}}_{\equiv \mathrm{T}_{\text {bound }}(z)}
$$

and use the corresponding decomposition

$$
\mathrm{T}(\lambda)=\mathrm{T}_{\mathrm{div}}(\lambda)+\mathrm{T}_{\text {bound }}(\lambda)
$$

for $\lambda \in\left(-\sqrt{m^{2}+\zeta}, \sqrt{m^{2}+\zeta}\right) \backslash\{ \pm m\}$.
6. Use "integral kernel technics" to determine the asymptotic behaviour of $\xi\left(\lambda, ; \mathrm{H}_{+}, \mathrm{H}_{0}\right)$ as $\lambda \rightarrow \pm \mathrm{m}$.

The divergence of $\xi\left(\lambda, ; \mathrm{H}_{+}, \mathrm{H}_{0}\right)$ is due to the Birman-Schwinger type operator $\mathrm{T}_{\text {div }}(\lambda)$.

8 Some references

- A. Pushnitski. The spectral shift function and the invariance principle. J. Funct. Anal., 2001.
- G. D. Raikov. Low Energy Asymptotics of the SSF for Pauli Operators with Nonconstant Magnetic Fields. Publ. Res. Inst. Math. Sci., 2010.
- R. Tiedra de Aldecoa. Asymptotics near $\pm \mathrm{m}$ of the spectral shift function for Dirac operators with non-constant magnetic fields.
Comm. Partial Differential Equations, 2011.

