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Commutator methods

Commutator methods

H, Hilbert space with norm || - || and scalar product (-, -)
PB(H), set of bounded linear operators on H

J (H), set of compact operators on H

A, H, self-adjoint operators in H with domains D(A), D(H), spectral
measures EA(-), EF(-) and spectra o(A), o(H)



Commutator methods

Definition
S € B(H) satisfies S € CK(A) if

R >t e M Se ¢ B(H)

is strongly of class Ck.

S € CY(A) if and only if
’<Acp, Se) — (e, 5Ag0>‘ < Const. ||p|?> for all ¢ € D(A).

The operator corresponding to the continuous extension of the quadratic
form is denoted by [A, S] € B(H).



Commutator methods

Definition

A self-adjoint operator H is of class CX(A) if (H — z)~! € CK(A) for some
ze C\ o(H).

If H is of class C1(A), then
[A(H=2)""] = (H=2)"'[H,A][(H - 2) ",

with
[H. Al € Z(D(H), D(H)")

the operator corresponding to the continuous extension to D(H) of the
quadratic form

D(H)ND(A) 3 ¢ — (Hp,Ap) — (Ap, Hp) € C.



Commutator methods

Theorem ([Mourre 81])

Let H be of class C>(A). Assume there exist an open set | C R, a number
a>0and K € % (H) such that

ER(N[iH, AlER (1) > aEP(1) + K. (%)

Then, H has at most finitely many eigenvalues in | (multiplicities
counted), and H has no singular continuous spectrum in .

e The inequality (%) is called a Mourre estimate for H on /.
e The operator A is called a conjugate operator for H on /.

e If K =0, then H is purely absolutely continuous in I N o(H).
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Commutator methods

Let M be a manifold with a probability measure i, and let {F;}:cr be a
C® measure preserving flow on M with complete vector field X.

Then, ergodicity, weak mixing and strong mixing of {F;}:cr are
expressible in terms of the self-adjoint operator H := —iX in L2(M, 1) :

o {F:}ter is ergodic iff 0 is a simple eigenvalue of H,

o {F:}ter is weakly mixing iff H has purely continuous
spectrum in {C - 1}+.

o {F:}ter is strongly mixing iff

lim <g0,e*’.tH) @) =0 forall p€{C-1}*.

t—00

strong weak

mixing mixing = ergodicity

a.c. spectrum in {C-1}+ =
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Horocycle flows

e > compact Riemannian surface of constant negative curvature
e M:= TX, unit tangent bundle of &

(M is a compact 3-manifold with probability measure ,
M ~T \ PSL(2; R) for some cocompact lattice I in PSL(2; R))

e F1 = {Fi,t}ter, horocycle flow on M
e F> = {Fyt}ter, geodesic flow on M

The flows F; and F» are 1-parameter groups of diffeomorphisms preserving
the measure p.



Horocycle flows

Geodesic in the Poincaré half plane



Horocycle flows

(z,¢)

(zt’ Ct)

(Positive) horocycle flow in the Poincaré half plane
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Horocycle flows

The unitary group
U(t)p :=po Fit, tER, p€H :=L13(M,puq),
has essentially self-adjoint generator
Hip:=—=iXjp, ¢ C*(M),
where X; is the divergence-free vector field associated to F;.
The horocycle flow F; is uniquely ergodic with respect to

[Furstenberg 73], mixing of all orders [Marcus 78], and U;(t) has countable
Lebesgue spectrum for each t # 0 [Parasyuk 53].
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Horocycle flows

The horocycle flow and the geodesic flow satisfy the homogeneous
commutation relation (see for instance [Bachir/Mayer 00])

Ua(s) Ur(t) Ua(—s) = Us(e® t), s, t eR, (Je %)

which is a consequence of the matrix identity in SL(2,R):

es/2 0 1 t\ (e 0\ (1 et
0 e2)\0 1 0 e/2)7\0 1)°
Applying the strong derivatives %{tzo and %‘s:o in (%), one obtains

that Hjy is of class C°°(H,) with

[iHy, Ho] = Hi.
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Time changes of horocycle flows

Time changes of horocycle flows

Take a C! vector field proportional to Xi; that is, fX; with
fe Cl(M; (0,oo)), and let F; be the flow of fXj.

The unitary group

Ui(t)p :=po I?Lt, teR, pe H = L2(M,/m/7")7

has generator H:=—ifX essentially self-adjoint on C!(M) and unitarily
equivalent to the operator in H given by

H = fY2Hy /2.

(The unitary % : H — H, ¢ — /2y realises the equivalence.)
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Time changes of horocycle flows

What are the spectral properties of H
(or equivalently of H)?

e Spectral properties are in general not preserved under time changes
even though basic ergodic properties are preserved.

e In 1974, Kushnirenko shows that the flow I?l is strongly mixing if f is
of class C*° and f — Xa(f) > 0. So, H has purely continuous
spectrum in R\ {0} in this case.

e In 2006, Katok and Thouvenot conjecture that H has absolute
continuous spectrum (even countable Lebesgue spectrum) if f is
sufficiently smooth.
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Mourre estimate

Mourre estimate

Let z € C\ R and assume for a moment that ¥ = 1, so that H = H;.
Then, one has (H + z)~1 € Cl(H,) with

[i(H+2)"Y Ha] = —(H + 2) '[iH, Ho](H + 2) !
= —(H+2z)'HH+2)"L.

It follows that

[i(H2+1) " Ho] = —(H*+1) " 2H*(H2 +1) 1.
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Mourre estimate

Thus H? is of class C°°(H,) with [iH?, Hp] = 2H?, and
EM ([iH?, H] EM (1) = EM (1)2H2EM (1) > 2inf(1) EM (1)

for each open bounded set | C (0, ).

Therefore, in the case f = 1, Mourre's theorem applies to the operator H?
on the interval (0, o).

So, let's try the same approach in the case f £ 1. ..
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Mourre estimate

If £ %1, one has (H + z)~! € C(Ha,) with
[i(H+2)"Y Ho] = =(H+2) ' (Hg + gH)(H +2)}

and
1 1

g:=5- §X2(In(f)).

f — Xa(f)

(note that g = o

> 0 under Kushnirenko's condition)

This implies that (H? +1)7! € C2(H,) with

[iH?, Hy] = H?g + 2HgH + gH>.
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Mourre estimate

Now, if g > 0 and f is of class C?, one obtains that
H2g + gH? = HHg'2g'/? 4+ g /2g P HH = ... = 2[H,g1/2]2 >0,
and thus
EM(1)[iH?, Ha| EM* (1) = EM*(1) (H?g + 2HgH + gH?)E"" (1)

> 2" (1) with  a:=2inf(/) - inf g(p) >0
peM

for each bounded open set | C (0, c0).

Since (H2 + 1)~ € C?(H,), we conclude by Mourre’s theorem that H? is
purely absolutely continuous outside {0}, where it has a simple eigenvalue
corresponding to the constant functions.

— H has the same spectral properties as H?.
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Mourre estimate

Summing up:

Theorem ([T.2012])

Under Kushnirenko's condition, for time changes f of class C?, the
operator associated to the vector field f X1 has purely absolutely
continuous spectrum, except at 0, where it has a simple eigenvalue.

In fact, we also show this for noncompact surfaces X of finite volume.

Fine, but... [Forni/Ulcigrai 12] have obtained the same result (and also
Lebesgue maximal spectral type) without assuming Kushnirenko's
condition (for compact surfaces and for time changes in a Sobolev space
of order > 11/2).
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Mourre estimate

So, can we get rid of Kushnirenko's condition?
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Mourre estimate (one more time)

Mourre estimate (one more time)

Lemma (Conjugate operator)

Take f € C3(M;(0,00)) and L > 0. Then, the operator

1 L ) )
ALp = L/ dt et Hye ™ o e CH(M),
0

is essentially self-adjoint in H.

Idea of the proof. A calculation on C!(M) shows that

1/t ,
L/o dt ™ Hye ™ = —j(X + 1 divg X),
for some vector field X on M. Furthermore, if f is of class C3, then the

r.h.s. is the self-adjoint generator of a strongly continuous unitary group
(see [Abraham/Marsden 78]).
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Mourre estimate (one more time)

Replacing H» by A; in the previous calculations and noting that

1t VR N LT e i
gL = / dr eltngfltH — / dt e/t‘?/ H?/gef/tll Hu”
L Jo L Jo

L ~ iy
:1/ dt%*eitng_ItH%
L 0
1t ~
:/ dt(goFl—t)7
L Jo ’

we obtain that (H? 4+ 1)1 € C2(A;) with

[i(H* + 1) 1 A = —(H* + 1)1 (H?gL + 2Hg H + gL H?) (H* + 1)



Mourre estimate (one more time)

Fi is uniquely ergodic, since it is a reparametrisation of the uniquely
ergodic flow {Fy ¢}+er [Humphries 74].

So, the Birkhoff average g; = %fOL dt (g o Fl,_t) converges uniformly on
M to [,,dfiq gi; that is,

. 1 1
L||_>moogL—/MdMQgL—2 2/MdMQX2(|n(f))
1 1 .
2 g i e
1 -
~27 2], f T 1 ef g
1
=

=—> g > 0if L > 0 is large enough.
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Mourre estimate (one more time)

So, we got rid off Kushnirenko's condition, and have proved the following:

Theorem ([T.2014])

For time changes f of class C3, the operator associated to the vector field
f X1 has purely absolutely continuous spectrum, except at 0, where it has
a simple eigenvalue.

(...if someone knows how to prove Lebesgue spectrum...)
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