Commutator methods for the spectral analysis of time changes of horocycle flows

Rafael Tiedra

Catholic University of Chile

Atlanta, February 2015

Table of Contents

- Commutator methods
- 2 Horocycle flows
- 3 Time changes of horocycle flows
- 4 Mourre estimate
- 5 Mourre estimate (one more time)

References

Commutator methods

- \mathcal{H} , Hilbert space with norm $\|\cdot\|$ and scalar product $\langle\cdot,\cdot
 angle$
- $\mathscr{B}(\mathcal{H})$, set of bounded linear operators on \mathcal{H}
- $\mathscr{K}(\mathcal{H})$, set of compact operators on \mathcal{H}
- A, H, self-adjoint operators in H with domains D(A), D(H), spectral measures E^A(·), E^H(·) and spectra σ(A), σ(H)

Definition

 $S\in \mathscr{B}(\mathcal{H})$ satisfies $S\in C^k(A)$ if

$$\mathbb{R} \ni t \mapsto \mathrm{e}^{-itA} \, S \, \mathrm{e}^{itA} \in \mathscr{B}(\mathcal{H})$$

is strongly of class C^k .

 $S \in C^1(A)$ if and only if

$$\left|\left\langle A\varphi, S\varphi\right\rangle - \left\langle \varphi, SA\varphi\right\rangle\right| \leq \mathrm{Const.}\, \|\varphi\|^2 \quad \text{for all } \varphi \in \mathcal{D}(A).$$

The operator corresponding to the continuous extension of the quadratic form is denoted by $[A, S] \in \mathscr{B}(\mathcal{H})$.

Definition

A self-adjoint operator H is of class $C^k(A)$ if $(H - z)^{-1} \in C^k(A)$ for some $z \in \mathbb{C} \setminus \sigma(H)$.

If H is of class $C^1(A)$, then

$$[A, (H-z)^{-1}] = (H-z)^{-1}[H, A](H-z)^{-1},$$

with

$$[H, A] \in \mathscr{B}(\mathcal{D}(H), \mathcal{D}(H)^*)$$

the operator corresponding to the continuous extension to $\mathcal{D}(H)$ of the quadratic form

$$\mathcal{D}(\mathcal{H})\cap\mathcal{D}(\mathcal{A})
i arphi\mapsto \langle \mathcal{H}arphi,\mathcal{A}arphi
angle -\langle \mathcal{A}arphi,\mathcal{H}arphi
angle\in\mathbb{C}.$$

Theorem ([Mourre 81])

Let H be of class $C^2(A)$. Assume there exist an open set $I \subset \mathbb{R}$, a number a > 0 and $K \in \mathscr{K}(\mathcal{H})$ such that

$$E^{H}(I)[iH,A]E^{H}(I) \ge aE^{H}(I) + K. \qquad (\bigstar)$$

Then, H has at most finitely many eigenvalues in I (multiplicities counted), and H has no singular continuous spectrum in I.

- The inequality (\bigstar) is called a Mourre estimate for H on I.
- The operator A is called a conjugate operator for H on I.
- If K = 0, then H is purely absolutely continuous in $I \cap \sigma(H)$.

Let *M* be a manifold with a probability measure μ , and let $\{F_t\}_{t\in\mathbb{R}}$ be a C^{∞} measure preserving flow on *M* with complete vector field *X*.

Then, ergodicity, weak mixing and strong mixing of $\{F_t\}_{t\in\mathbb{R}}$ are expressible in terms of the self-adjoint operator H := -iX in $L^2(M, \mu)$:

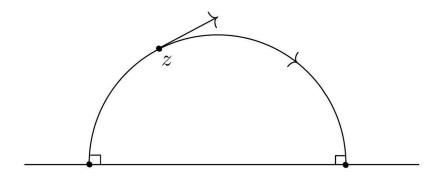
- $\{F_t\}_{t\in\mathbb{R}}$ is ergodic iff 0 is a simple eigenvalue of H,
- {*F*_t}_{t∈ℝ} is weakly mixing iff *H* has purely continuous spectrum in {ℂ · 1}[⊥].
- $\{F_t\}_{t\in\mathbb{R}}$ is strongly mixing iff

$$\lim_{t\to\infty}\left\langle \varphi, \mathrm{e}^{-it\mathcal{H}}\right) \, \varphi \Big\rangle = 0 \quad \text{for all } \varphi \in \{\mathbb{C}\cdot 1\}^\perp.$$

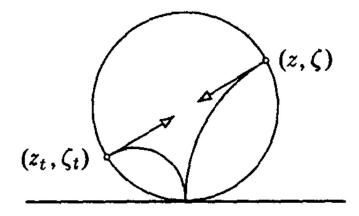
Horocycle flows

- Σ, compact Riemannian surface of constant negative curvature
- M := T¹Σ, unit tangent bundle of Σ
 (M is a compact 3-manifold with probability measure μ, M ≃ Γ \ PSL(2; ℝ) for some cocompact lattice Γ in PSL(2; ℝ))
- $F_1 \equiv \{F_{1,t}\}_{t \in \mathbb{R}}$, horocycle flow on M
- $F_2 \equiv \{F_{2,t}\}_{t \in \mathbb{R}}$, geodesic flow on M

The flows F_1 and F_2 are 1-parameter groups of diffeomorphisms preserving the measure μ .



Geodesic in the Poincaré half plane



(Positive) horocycle flow in the Poincaré half plane

The unitary group

$$U_j(t) \varphi := \varphi \circ F_{j,t}, \quad t \in \mathbb{R}, \ \varphi \in \mathcal{H} := L^2(M, \mu_\Omega),$$

has essentially self-adjoint generator

$$H_j \varphi := -i X_j \varphi, \quad \varphi \in C^\infty(M),$$

where X_j is the divergence-free vector field associated to F_j .

The horocycle flow F_1 is uniquely ergodic with respect to μ [Furstenberg 73], mixing of all orders [Marcus 78], and $U_1(t)$ has countable Lebesgue spectrum for each $t \neq 0$ [Parasyuk 53].

The horocycle flow and the geodesic flow satisfy the homogeneous commutation relation (see for instance [Bachir/Mayer 00])

$$U_2(s)\,U_1(t)\,U_2(-s)=U_1(\mathrm{e}^s\,t),\quad s,t\in\mathbb{R}, \qquad (\bigstar\bigstar)$$

which is a consequence of the matrix identity in $SL(2, \mathbb{R})$:

$$\begin{pmatrix} \mathrm{e}^{s/2} & 0\\ 0 & \mathrm{e}^{-s/2} \end{pmatrix} \begin{pmatrix} 1 & t\\ 0 & 1 \end{pmatrix} \begin{pmatrix} \mathrm{e}^{-s/2} & 0\\ 0 & \mathrm{e}^{s/2} \end{pmatrix} = \begin{pmatrix} 1 & \mathrm{e}^s t\\ 0 & 1 \end{pmatrix}.$$

Applying the strong derivatives $\frac{d}{dt}|_{t=0}$ and $\frac{d}{ds}|_{s=0}$ in $(\bigstar \bigstar)$, one obtains that H_1 is of class $C^{\infty}(H_2)$ with

$$\left[iH_1,H_2\right]=H_1.$$

Time changes of horocycle flows

Take a C^1 vector field proportional to X_1 ; that is, fX_1 with $f \in C^1(M; (0, \infty))$, and let \widetilde{F}_1 be the flow of fX_1 .

The unitary group

$$\widetilde{U}_1(t) \varphi := \varphi \circ \widetilde{F}_{1,t}, \quad t \in \mathbb{R}, \ \varphi \in \widetilde{\mathcal{H}} := \mathsf{L}^2(M, \mu_\Omega/f),$$

has generator $\widetilde{H} := -ifX_1$ essentially self-adjoint on $C^1(M)$ and unitarily equivalent to the operator in \mathcal{H} given by

$$H := f^{1/2} H_1 f^{1/2}.$$

(The unitary $\mathscr{U}:\mathcal{H}\to\widetilde{\mathcal{H}},\,\varphi\mapsto f^{1/2}\varphi$ realises the equivalence.)

What are the spectral properties of \widetilde{H} (or equivalently of H)?

- Spectral properties are in general not preserved under time changes even though basic ergodic properties are preserved.
- In 1974, Kushnirenko shows that the flow *F*₁ is strongly mixing if *f* is of class C[∞] and *f* − X₂(*f*) > 0. So, *H* has purely continuous spectrum in ℝ \ {0} in this case.
- In 2006, Katok and Thouvenot conjecture that \tilde{H} has absolute continuous spectrum (even countable Lebesgue spectrum) if f is sufficiently smooth.

Mourre estimate

Let $z \in \mathbb{C} \setminus \mathbb{R}$ and assume for a moment that $f \equiv 1$, so that $H \equiv H_1$. Then, one has $(H + z)^{-1} \in C^1(H_2)$ with

$$ig[i(H+z)^{-1},H_2ig] = -(H+z)^{-1}[iH,H_2](H+z)^{-1}$$

= $-(H+z)^{-1}H(H+z)^{-1}.$

It follows that

$$[i(H^{2}+1)^{-1}, H_{2}] = -(H^{2}+1)^{-1}2H^{2}(H^{2}+1)^{-1}$$

Thus H^2 is of class $C^{\infty}(H_2)$ with $[iH^2, H_2] = 2H^2$, and

$$E^{H^2}(I)[iH^2, H_2]E^{H^2}(I) = E^{H^2}(I)2H^2E^{H^2}(I) \ge 2\inf(I)E^{H^2}(I)$$

for each open bounded set $I \subset (0, \infty)$.

Therefore, in the case $f \equiv 1$, Mourre's theorem applies to the operator H^2 on the interval $(0, \infty)$.

So, let's try the same approach in the case $f \not\equiv 1 \dots$

If
$$f \not\equiv 1$$
, one has $(H + z)^{-1} \in C^1(H_2)$ with
 $[i(H + z)^{-1}, H_2] = -(H + z)^{-1}(Hg + gH)(H + z)^{-1}$
and

$$g := \frac{1}{2} - \frac{1}{2}X_2(\ln(f)).$$

(note that
$$g = \frac{f - X_2(f)}{2f} > 0$$
 under Kushnirenko's condition)

This implies that $(H^2+1)^{-1}\in C^2(H_2)$ with

$$\left[iH^2,H_2\right] = H^2g + 2HgH + gH^2.$$

Now, if g > 0 and f is of class C^2 , one obtains that

$$H^2g + gH^2 = HHg^{1/2}g^{1/2} + g^{1/2}g^{1/2}HH = \cdots = 2[H,g^{1/2}]^2 \ge 0,$$

and thus

$$E^{H^{2}}(I)[iH^{2}, H_{2}]E^{H^{2}}(I) = E^{H^{2}}(I)(H^{2}g + 2HgH + gH^{2})E^{H^{2}}(I)$$

$$\geq aE^{H^{2}}(I) \quad \text{with} \quad a := 2\inf(I) \cdot \inf_{p \in M}g(p) > 0$$

for each bounded open set $I \subset (0,\infty)$.

Since $(H^2 + 1)^{-1} \in C^2(H_2)$, we conclude by Mourre's theorem that H^2 is purely absolutely continuous outside $\{0\}$, where it has a simple eigenvalue corresponding to the constant functions.

 \implies H has the same spectral properties as H^2 .

Summing up:

Theorem ([T. 2012])

Under Kushnirenko's condition, for time changes f of class C^2 , the operator associated to the vector field $f X_1$ has purely absolutely continuous spectrum, except at 0, where it has a simple eigenvalue.

In fact, we also show this for noncompact surfaces $\boldsymbol{\Sigma}$ of finite volume.

Fine, but... [Forni/Ulcigrai 12] have obtained the same result (and also Lebesgue maximal spectral type) without assuming Kushnirenko's condition (for compact surfaces and for time changes in a Sobolev space of order > 11/2).

So, can we get rid of Kushnirenko's condition?

Mourre estimate (one more time)

Lemma (Conjugate operator)

Take $f \in C^3(M; (0, \infty))$ and L > 0. Then, the operator

$$A_L \varphi := rac{1}{L} \int_0^L \mathrm{d}t \, \, \mathrm{e}^{itH} \, H_2 \, \mathrm{e}^{-itH} \, arphi, \quad arphi \in C^1(M),$$

is essentially self-adjoint in \mathcal{H} .

Idea of the proof. A calculation on $C^1(M)$ shows that

$$\frac{1}{L}\int_0^L \mathrm{d}t \,\,\mathrm{e}^{itH}\,H_2\,\mathrm{e}^{-itH} = -i\big(X+\tfrac{1}{2}\,\mathrm{div}_\Omega\,X\big),$$

for some vector field X on M. Furthermore, if f is of class C^3 , then the r.h.s. is the self-adjoint generator of a strongly continuous unitary group (see [Abraham/Marsden 78]).

Replacing H_2 by A_L in the previous calculations and noting that

$$g_{L} := \frac{1}{L} \int_{0}^{L} \mathrm{d}t \, \mathrm{e}^{itH} \, g \, \mathrm{e}^{-itH} = \frac{1}{L} \int_{0}^{L} \mathrm{d}t \, \, \mathrm{e}^{it \, \mathcal{U}^{*} \widetilde{H} \, \mathcal{U}} \, g \, \mathrm{e}^{-it \, \widetilde{\mathcal{U}}^{*} \widetilde{H} \, \mathcal{U}}$$
$$= \frac{1}{L} \int_{0}^{L} \mathrm{d}t \, \, \mathcal{U}^{*} \, \mathrm{e}^{it\widetilde{H}} \, g \, \mathrm{e}^{-it\widetilde{H}} \, \mathcal{U}$$
$$= \frac{1}{L} \int_{0}^{L} \mathrm{d}t \, \left(g \circ \widetilde{F}_{1,-t}\right),$$

we obtain that $(H^2+1)^{-1}\in C^2(A_L)$ with

$$\left[i(H^2+1)^{-1},A_L\right] = -(H^2+1)^{-1} \left(H^2 g_L + 2Hg_L H + g_L H^2\right) (H^2+1)^{-1}$$

 F_1 is uniquely ergodic, since it is a reparametrisation of the uniquely ergodic flow $\{F_{1,t}\}_{t\in\mathbb{R}}$ [Humphries 74].

So, the Birkhoff average $g_L = \frac{1}{L} \int_0^L dt \left(g \circ \widetilde{F}_{1,-t}\right)$ converges uniformly on M to $\int_M d\widetilde{\mu}_\Omega g_L$; that is,

$$\lim_{L \to \infty} g_L = \int_M d\tilde{\mu}_{\Omega} g_L = \frac{1}{2} - \frac{1}{2} \int_M d\tilde{\mu}_{\Omega} X_2(\ln(f))$$

= $\frac{1}{2} + \frac{1}{2 \int_M f^{-1} d\mu_{\Omega}} \int_M d\mu_{\Omega} X_2(f^{-1})$
= $\frac{1}{2} + \frac{i}{2 \int_M f^{-1} d\mu_{\Omega}} \langle 1, H_2 f^{-1} \rangle$
= $\frac{1}{2}$.

 $\implies g_L > 0$ if L > 0 is large enough.

So, we got rid off Kushnirenko's condition, and have proved the following:

Theorem ([T. 2014])

For time changes f of class C^3 , the operator associated to the vector field $f X_1$ has purely absolutely continuous spectrum, except at 0, where it has a simple eigenvalue.

(... if someone knows how to prove Lebesgue spectrum ...)

References

- G. Forni and C. Ulcigrai. Time-changes of horocycle flows. J. Mod. Dyn., 2012
- A. G. Kushnirenko. Spectral properties of some dynamic systems with polynomial divergence of orbits. Moscow Univ. Math. Bull., 1974
- R. Tiedra. Spectral analysis of time changes of horocycle flows. J. Mod. Dyn., 2012
- R. Tiedra. Commutator methods for the spectral analysis of uniquely ergodic dynamical systems. To appear in Ergodic Theory Dynam. Systems