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Commutator methods

Commutator methods

H, Hilbert space with norm || - || and scalar product (-, -)

PB(H), set of bounded linear operators on H

J (H), set of compact operators on H

A, H, self-adjoint operators in H with domains D(A), D(H), spectral
measures EA(-), EM(-), and spectra o(A), o(H)



Commutator methods

Definition
S € B(M) satisfies S € CK(A) if the map

R >t e M Se™ ¢ B(H)

is strongly of class Ck.

S € CY(A) if and only if
|(0, SAp) — (Ap, Sp)| < Const. ll>  for all ¢ € D(A).

The bounded operator associated to the continuous extension of the
quadratic form is denoted by [S, A], and

[iS,A]l =s- 4

i e M SeA ¢ B(H).

t=0




Commutator methods

Definition

A self-adjoint operator H is of class CX(A) if (H — z)~! € CK(A) for some
ze C\ o(H).

If H is of class C1(A), then
[A,(H=2)7"] = (H—2)7'[H,Al(H - 2) 7",

with [H, A] the operator from D(H) to D(H)* corresponding to the
continuous extension to D(H) of the quadratic form

D(H)ND(A) 3> ¢ — (Hp,Ap) — (Ap, Hp) € C.



Commutator methods

Theorem (Mourre 1981, and others in the 1990's)

Let H be of class C2(A). Assume there exist a bounded Borel set | C R, a
number a > 0 and K € J# () such that

ER(NiH,AIER (1) > aER (1) + K. (%)

Then, H has at most finitely many eigenvalues in | (multiplicities
counted), and H has no singular continuous spectrum in .

e The inequality (%) is called a Mourre estimate for H on /.
e The operator A is called a conjugate operator for H on /.

e If K =0, H has purely absolutely continuous spectrum in I N o(H).
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Flows

Flows

Let M be a smooth manifold with probability measure u, and {F:}¢cr a
C! measure preserving flow on M with CO vector field X.

Ergodicity, weak mixing and strong mixing of {F;};cr with respect to p
are expressible in terms of the self-adjoint operator Hg := iXF in L2(M, p).

e {F:}ter is ergodic if and only if 0 is a simple eigenvalue of H,

e {F:}ter is weakly mixing if and only if He has purely continuous
spectrum in R\ {0}.

e {Fi}ter is strongly mixing if and only if

- —itHp _\ _ L
tll>r1;o<<p,e ¢)=0 forallpe{C-1}".

: stron weak
a.c. spectrum in {C-1}+ = mixini = mixing

= ergodicity

~
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Minimal W" flows

Minimal WY flows

e M, compact connected Riemannian manifold with distance d,

o {fi}ter, Ce Anosov flow on M: that is, a C1*< flow on M without
fixed points, with three submanifolds W"(x), W*(x), Orb(x) passing
through each x € M,

W"(x) = {y eEM | t_lirrood(ft(x), fe(y)) = 0} (unstable manifold),
We(x) = {y eM| t_IiTood(ft(x), fi(y)) = 0} (stable manifold),
Orb(x) = {fi(x) |t e R} (orbit),

with respective tangent spaces E;, EZ, E, continuous in x and
satisfying
<M = E;! ® E; @ E,.

The flow {f;}+cr has a C® vector field X.



Minimal W" flows

Assume that {f; }+cr is a codimension 1 Anosov flow. More specifically:

{W"(x)}xem is a 1-dimensional orientable C° foliation of M (in particular
each W"Y(x) is a curve), which supports a C® minimal flow {¢s}scr whose
orbits are the unstable manifolds.*

{¢s}ser is called minimal W*" flow or minimal W" parametrisation.

LA flow on a compact metric manifold is minimal if each of its orbit is dense.



Minimal W" flows

The iconic example of Anosov flow {f;}+cr and W" flow {¢s}scr are the
geodesic flow and the horocycle flow on the unit tangent bundle of a
compact connected orientable surface of (possibly variable) negative

curvature.
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Minimal W" flows

Geodesic flow in the Poincaré half plane
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Minimal W" flows

(2,€)

(ztr Ct)

Positive horocycle flow in the Poincaré half plane
(from Bekka/Mayer's book)
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Minimal W" flows

Geodesics and horocycles in the Poincaré half plane
(from Hasselblatt/Katok's book)
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Minimal W" flows

Anosov stable and unstable foliations for the geodesic flow on the unit
tangent bundle of a surface of constant negative curvature

(from http://kyokan.ms.u-tokyo.ac.jp/~showroom/)
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Minimal W" flows

Some facts from [Marcus 75], [Marcus 77], [Bowen-Marcus 77]:

(i) {¢s}ser is uniquely ergodic w.r.t. a probability mesure p on M.

This means that for any h € C(M) we have

uniformly in x € M.

(i) There exists s* : R x R x M — R such that

(ﬂogﬁsof_t)(X) :¢s*(t,s,x)(x)a s,teR, xe M,

(the Anosov flow {f;};cr expands the W" orbits).
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Minimal W" flows

(ii)) {W"(x)}xem admits a CO parametrisation {¢s}scr such that
fi o 55 of 4= qz,\ts, s, t e R, A > 1 (thatis, s*(t,s,x) = Als)
(uniformly expanding parametrisation).

(iv) {@}SGR is uniquely ergodic w.r.t. a probability measure 1 given in
terms of p.

(v) g is invariant under the Anosov flow {f;};cr.
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Minimal W" flows

{ds}ser is C1, and {¢s}scr is a C reparametristation of {¢s}ser.

Under this assumption, we have:
o i=p/pwithp=p[,dup "t and pe C(M;(0,00)).

e The group in H := L?(M, 11) given by

Ufgo::googbs, seR, peH,
is strongly continuous, unitary, with essentially self-adjoint generator
Hyp = iXsp, @€ CHM),
e The group in H given by
Utfgozzapoft, teR, peH,

is strongly continuous, but not unitary if p # 1.
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Minimal W" flows

The derivative

Ups(x) := (01025%)(t, s, x)

exists and is continuous in s,t € R and x € M.

Under this assumption, using the unique ergodicity of {¢s}ser, Marcus
has proved that {¢s}scr is strongly mixing w.r.t. . Therefore,

Hy has purely continuous spectrum in R\ {0}.

So, let's prove that Hy has purely absolutely continuous spectrum in
R\ {0} under some additional regularity assumption.
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Mourre estimate

Mourre estimate

Xr and X, are Ct, X¢(p) € C(M) and p~1X¢(p) € CL(M).

Intuitively, the conjugate operator is constructed as follows:

1) Sum 2iXr and its “divergence” ip~1X¢(p) to get a symmetric
operator 2iXs + ip~ ' X¢(p) on CH(M).

2) Take the Birkhoff average of 2iXr + ip~ ' X¢(p) along the flow
{¢s}scr to take into account the unique ergodicity of {¢s}scr.

19/28



Proposition (Conjugate operator)

Suppose that Assumptions 1, 2, 3 are satisfied. Then, the operator

1 t
App = t/ ds U2 (2iXr + ip X Xe(p)) U250, t>0, p € CY(M),
0

is essentially self-adjoint in H.

Idea of the proof.

The operator 2iXr + ip~1X¢(p) is symmetric on C1(M), and the
operations UZ( --- )U?, and %fot ds( ---) preserve this property. So, A;
is symmetric on C1(M).

Furthermore, A; can be written as i(X; + g:) on C}(M), with X; a C!
vector field and g; € C1(M;R).

Operators of this type are essentially self-adjoint on C*(M). O
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Mourre estimate

With some calculations on C!(M) using properties of the flows {f;};cr,

{¢s}scr, {ds}scr and the function s 5(x) = (91825*)(t, s, x), we obtain
the following:

Lemma (Regularity of Hy)

Suppose that Assumptions 1, 2, 3 are satisfied. Then, for t > 0 we have
(Hy, — i)™t € C?(At), and

[i(Hp = i) ™" Al =2(Hy — i) " ceHg(Hp — i) = [(Hp = 1) ct]

with

1 t
@ o= / ds (uojoogés).
t Jo
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Mourre estimate

Because of the general formula
[i(H=2)" Al = =(H = 2) '[iH,A|(H - 2) ",
we infer from the lemma that

EMe(1)[iHg, —A EM(1)
— 2EMs (1) ceHyEMe (1) — (Hg — i) EMe (1) [(Hp — 1), ] (Hg — i) EM(1)

for each bounded Borel set | C R.



Mourre estimate

Can we get some positivity out of the last equation ?
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Mourre estimate

Proposition (Mourre estimate)

Suppose that Assumptions 1, 2, 3 are satisfied, and take | C (0, c0)
compact with | No(Hy) # @. Then, there exist t > 0 and a > 0 such that

EHo(1)[iHy, —Ad) EFe(1) > aERe(1).

A similar result holds for | C (—o0,0).

Idea of the proof.
The unique ergodicity of {¢s}scr w.r.t. u implies that

1 t
lim ¢ = lim / ds (ug,0 © ¢s) :/ dp oo
0 M

t—o0 t—oo t

uniformly on M. Moreover, some calculations show that

/ du Up,0 = In()\) > 0.
M




Mourre estimate

Idea of the proof (continued).
So, one has for t > 0 large enough
Efo(1)[iHy, —Ac] EMe (1)
= 2EMs (1) e HyERe (1)
— (Hg — i) EMs()[(Hs — )™, ¢ — In(N)] (Hg — i) EM2 (1)
~ 2EMe (1) In(\)H EMe (1)
> 21In(\)inf(1) EFe (1)

which gives

EMe(1)[iHg, —Ae EM2(1) > aEMe(1) with a2 € (0,2In(\)inf(/)).

OJ




Mourre estimate

Using Mourre's theorem, we conclude that:

Theorem (Absolutely continuous spectrum)

Suppose that Assumptions 1, 2, 3 are satisfied. Then, Hy has purely
absolutely continuous spectrum, except at 0, where it has a simple
eigenvalue with eigenspace C - 1.

e The theorem applies in particular to generators of reparametrisations
of the horocycle flow on the unit tangent bundle of a compact
connected orientable surface of constant negative curvature.

e For reparametrisations of the horocycle flow on the unit tangent
bundle of a compact connected orientable surface of variable
negative curvature the question is open.
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Mourre estimate

Gracias !
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