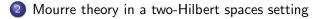
Two-Hilbert spaces Mourre theory for the Laplace-Beltrami operator on manifolds with asymptotically cylindrical ends

Rafael Tiedra de Aldecoa


Pontifical Catholic University of Chile

Matsumoto, February 2017

Joint work with Serge Richard (Nagoya University)

Mourre theory in one Hilbert space

Manifolds with asymptotically cylindrical ends 3

Mourre theory in one Hilbert space

- \mathcal{H} , Hilbert space with norm $\|\cdot\|$ and scalar product $\langle\cdot,\cdot
 angle$
- $\mathscr{B}(\mathcal{H})$, set of bounded linear operators on \mathcal{H}
- $\mathscr{K}(\mathcal{H})$, set of compact operators on \mathcal{H}
- A, H, self-adjoint operators in H with domains D(A), D(H), spectral measures E^A(·), E^H(·) and spectra σ(A), σ(H)

Definition

 $S\in \mathscr{B}(\mathcal{H})$ satisfies $S\in C^k(A)$ if the map

$$\mathbb{R}
i t \mapsto \mathrm{e}^{-itA} \, S \, \mathrm{e}^{itA} \in \mathscr{B}(\mathcal{H})$$

is strongly of class C^k .

 $S \in C^1(A)$ if and only if

$$\left|\langle \varphi, \mathsf{S} \mathsf{A} \varphi \rangle - \langle \mathsf{A} \varphi, \mathsf{S} \varphi \rangle \right| \leq \mathsf{Const.} \, \|\varphi\|^2 \quad \text{for all } \varphi \in \mathcal{D}(\mathsf{A}).$$

The bounded operator associated to the continuous extension of the quadratic form is denoted by [S, A], and

$$[iS,A] = s - \frac{d}{dt} \Big|_{t=0} e^{-itA} S e^{itA} \in \mathscr{B}(\mathcal{H}).$$

Definition

A self-adjoint operator H is of class $C^k(A)$ if $(H - z)^{-1} \in C^k(A)$ for some $z \in \mathbb{C} \setminus \sigma(H)$.

If H is of class $C^1(A)$, then

$$[A, (H-z)^{-1}] = (H-z)^{-1}[H, A](H-z)^{-1},$$

with [H, A] the operator from $\mathcal{D}(H)$ to $\mathcal{D}(H)^*$ corresponding to the continuous extension to $\mathcal{D}(H)$ of the quadratic form

$$\mathcal{D}(\mathcal{H})\cap\mathcal{D}(\mathcal{A})
i arphi\mapstoig\langle\mathcal{H}arphi,\mathcal{A}arphiig
angle-ig\langle\mathcal{A}arphi,\mathcal{H}arphiig
angle\in\mathbb{C}.$$

Mourre's theorem

Theorem (Mourre 81)

Let H be of class $C^2(A)$. Assume there exist an open set $I \subset \mathbb{R}$, a number a > 0 and $K \in \mathscr{K}(\mathcal{H})$ such that

$$\mathsf{E}^{\mathsf{H}}(I)[i\mathsf{H},\mathsf{A}]\mathsf{E}^{\mathsf{H}}(I) \ge \mathsf{a}\mathsf{E}^{\mathsf{H}}(I) + \mathsf{K}. \tag{\textbf{\textbf{(}}}$$

Then, H has at most finitely many eigenvalues in I (multiplicities counted), and H has no singular continuous spectrum in I.

- The inequality (\bigstar) is called a Mourre estimate for H on I.
- The operator A is called a conjugate operator for H on I.
- If K = 0, then H is purely absolutely continuous in $I \cap \sigma(H)$.

First example in one Hilbert space

Let Q and P be the position and momentum operators in $\mathcal{H} := \mathsf{L}^2(\mathbb{R})$

$$(Q\varphi)(x):=x\,\varphi(x),\quad (P\varphi)(x):=-i\,(\partial_x\varphi)(x),\quad \varphi\in\mathscr{S}(\mathbb{R}),\;x\in\mathbb{R}.$$

Let H be the Laplacian

$$H := P^2 = -\partial_x^2, \quad \mathcal{D}(H) = \mathcal{H}^2(\mathbb{R}).$$

Let $A := \frac{1}{2}(PQ + QP)$ be the generator of the dilations group

$$ig(U(t)arphiig)(x):=\mathrm{e}^{t/2}\,arphi(\mathrm{e}^t\,x),\quad arphi\in\mathscr{S}(\mathbb{R}),\;x,t\in\mathbb{R}$$

(A is essentially self-adjoint on $\mathscr{S}(\mathbb{R})$)

On $\mathscr{S}(\mathbb{R})$:

$$[H, A] = \frac{1}{2} [P^2, PQ + QP] = \frac{1}{2} \{ P \underbrace{[P^2, Q]}_{-2iP} + \underbrace{[P^2, Q]}_{-2iP} P \} = -2iH.$$

Thus,

$$[(H+i)^{-1}, A] = -(H+i)^{-1} [H, A] (H+i)^{-1}$$

= 2i (H+i)^{-1} H (H+i)^{-1}
 $\in \mathscr{B}(\mathcal{H})$

and

$$\left[\left[(H+i)^{-1},A\right],A\right]\in\mathscr{B}(\mathcal{H}).$$

(first assumption of Mourre satisfied)

Let b > a > 0. Then,

$$E^{H}((a,b))[iH,A]E^{H}((a,b)) = 2E^{H}((a,b))HE^{H}((a,b))$$

$$= 2E^{H}((a,b))\int_{\sigma(H)}\lambda\chi_{(a,b)}(\lambda)E^{H}(d\lambda)$$

$$> 2E^{H}((a,b))aE^{H}((a,b))$$

$$= 2aE^{H}((a,b)).$$

(second assumption of E. Mourre satisfied with K = 0 for each interval $(a, b) \subset (0, \infty)$)

 \rightsquigarrow *H* is purely absolutely continuous on $(0, \infty)$.

Second example in one Hilbert space

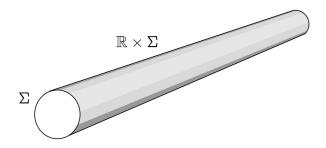
 Δ_{Σ} , Laplace-Beltrami operator on a compact, orientable, connected, Riemannian manifold (Σ, h) of dimension $n \ge 1$ without boundary, with metric h and volume element ds.

 Δ_{Σ} has discrete spectrum

$$0=\tau_0<\tau_1\leq\tau_2\leq\ldots$$

So,

$$\Delta_{\Sigma} = \sum_{j \ge 0} \tau_j \mathcal{P}_j,$$


with \mathcal{P}_j the 1D-orthogonal projection associated to τ_j .

(Hodge Theorem for functions)

Let

$$H_0 := \Delta_{\mathbb{R} imes \Sigma} \simeq P^2 \otimes 1 + 1 \otimes \Delta_{\Sigma}$$

be the Laplace-Beltrami operator in $\mathcal{H}_0 := L^2(\mathbb{R}, dx) \otimes L^2(\Sigma, ds)$.

 H_0 is essentially self-adjoint on $\mathscr{S}(\mathbb{R}) \odot C^{\infty}(\Sigma)$, and

$$A_0 := rac{1}{2}(PQ + QP) \otimes 1$$

is essentially self-adjoint on $\mathscr{S}(\mathbb{R}) \odot L^2(\Sigma, ds)$.

On $\mathscr{S}(\mathbb{R}) \odot C^{\infty}(\Sigma)$:

$$\begin{split} [H_0, A_0] &= \left[P^2 \otimes 1 + 1 \otimes \Delta_{\Sigma}, \frac{1}{2} (PQ + QP) \otimes 1 \right] \\ &= \left[P^2, \frac{1}{2} (PQ + QP) \right] \otimes 1 \\ &= -2iP^2 \otimes 1. \end{split}$$

Thus,

$$\begin{bmatrix} (H_0 + i)^{-1}, A_0 \end{bmatrix} = -(H_0 + i)^{-1} [H_0, A_0] (H_0 + i)^{-1} \\ = 2i (H_0 + i)^{-1} (P^2 \otimes 1) (H_0 + i)^{-1} \\ \in \mathscr{B}(\mathcal{H}_0)$$

and

$$\left[\left[(H_0+i)^{-1},A_0\right],A_0\right]\in\mathscr{B}(\mathcal{H}_0).$$

(first assumption of Mourre satisfied)

Let $au_{j_0} < a < b < au_{j_0+1}$ for some $j_0 \in \mathbb{N}$. Then,

$$\begin{split} & E^{H_0}\big((a,b)\big) \left[iH_0,A_0\right] E^{H_0}\big((a,b)\big) \\ &= E^{H_0}\big((a,b)\big) \left(2P^2 \otimes 1\right) E^{H_0}\big((a,b)\big) \\ &= 2E^{H_0}\big((a,b)\big) H_0 E^{H_0}\big((a,b)\big) \\ &- 2E^{H_0}\big((a,b)\big) \left(1 \otimes \Delta_{\Sigma}\right) E^{H_0}\big((a,b)\big) \\ &= 2\underbrace{E^{H_0}\big((a,b)\big) H_0 E^{H_0}\big((a,b)\big)}_{>a E^{H_0}\big((a,b)\big)} \\ &- 2\sum_{j \ge 0} \tau_j E^{H_0}\big((a,b)\big) \left(1 \otimes \mathcal{P}_j\big) E^{H_0}\big((a,b)\big) \\ &\leq \tau_{j_0} E^{H_0}\big((a,b)\big) \\ &> 2(a - \tau_{j_0}) E^{H_0}\big((a,b)\big) \end{split}$$

(second assumption of Mourre satisfied with K=0 for each interval $(a,b)\subset (au_j, au_{j+1}))$

\longrightarrow H_0 is purely absolutely continuous on $[0,\infty) \setminus \{\tau_j\}_{j\geq 0}$.

Mourre theory in a two-Hilbert spaces setting

- *H*, self-adjoint operator with domain $\mathcal{D}(H)$, spectral measure $E^{H}(\cdot)$, and spectrum $\sigma(H)$ in a first Hilbert space \mathcal{H}
- A_0, H_0 , self-adjoint operators in a second Hilbert space \mathcal{H}_0
- $J \in \mathscr{B}(\mathcal{H}_0, \mathcal{H})$, identification operator

Theorem (Richard-T. 2013)

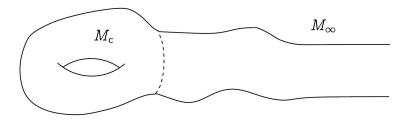
Assume that

(i) H_0 is of class $C^1(A_0)$ in \mathcal{H}_0 ,

(ii) there is $\mathscr{D} \subset \mathcal{D}(A_0 J^*) \subset \mathcal{H}$ such that $JA_0 J^*$ is essentially self-adjoint on \mathscr{D} , with self-adjoint extension denoted by A,

(iii) compacity conditions between H, H_0, A_0 and J.

Then, if H_0 satisfies a Mourre estimate with respect to A_0 on $I \subset \mathbb{R}$, H also satisfies a Mourre estimate with respect to A on $I \subset \mathbb{R}$.


Thus, H has at most finitely many eigenvalues in I (multiplicities counted), and H has no singular continuous spectrum in I if H_0 and A_0 satisfy the two assumptions of Mourre on I.

Manifolds with asymptotically cylindrical ends

(M,g) complete Riemannian manifold of dimension $n+1 \ge 2$ without boundary, with metric g and volume element dv.

 $M=M_{
m c}\cup M_{\infty}$, with $M_{
m c}$ relatively compact and M_{∞} open in M with a diffeomorphism

$$\iota: M_{\infty} \to (0,\infty) \times \Sigma.$$

- H := Δ_M, Laplace-Beltrami operator in H := L²(M, dv), essentially self-adjoint on C_c[∞](M) [Gaffney 51/Cordes 72].
- $H_0 = P^2 \otimes 1 + 1 \otimes \Delta_{\Sigma}$ in $\mathcal{H}_0 = L^2(\mathbb{R}, dx) \otimes L^2(\Sigma, ds)$ as before.

•
$$\mathsf{j} \in C^\inftyig(\mathbb{R}; [0,1]ig)$$
 satisfies $\mathsf{j}(x) := egin{cases} 1 & ext{if } x \geq 2 \\ 0 & ext{if } x \leq 1 \end{cases}$, and

$$J:\mathcal{H}_{0}
ightarrow\mathcal{H},\quad arphi\mapsto\chi_{\infty}\sqrt{rac{\iota^{*}(1\otimes\mathfrak{h})}{\mathfrak{g}}}\,\iota^{*}ig((\mathrm{j}\otimes1)arphiig),$$

with χ_{∞} the characteristic function for M_{∞} , $\mathfrak{g} := \sqrt{\det(g_{jk})}$ and $\mathfrak{h} := \sqrt{\det(h_{jk})}$.

 $\longleftrightarrow \|J\varphi\|_{\mathcal{H}} = \|\varphi\|_{\mathcal{H}_0} \text{ for } \varphi \in \mathcal{H}_0 \text{ with } \operatorname{supp}(\varphi) \subset (2,\infty) \times \Sigma.$

Assumption (Short-range decay of the metric)

There exists $\varepsilon > 0$ such that for each $\alpha \in \mathbb{N}^{n+1}$ and each $j, k \in \{1, \dots, n+1\}$:

$$\left|\partial^lphaig((\iota^{-1})^*g_{jk}-(1\oplus h)_{jk}ig)(x,\omega)
ight|\leq c_lphaig\langle x
angle^{-1-arepsilon}$$

for some constant $c_{\alpha} \geq 0$ and for all x > 0 and $\omega \in \Sigma$.

(On M_{∞} , the pullback of g converges to the product metric $1 \oplus h$ on $(0,\infty) \times \Sigma$ with rate $\langle x \rangle^{-1-\varepsilon}$.)

 \rightsquigarrow compacity conditions between H, H_0, A_0 and J...

We take $A := JA_0J^*$ as in the Theorem, but how can we show that A is essentially self-adjoint on $\mathscr{D} := C_c^{\infty}(M)$?

A is the generator of the strongly continuous unitary group

$$U_t \psi := J_t^{1/2} F_t^* \psi, \quad t \in \mathbb{R}, \ \psi \in C_c^\infty(M),$$

where for $p \in M$

$$\frac{\mathrm{d}}{\mathrm{d}t}F_t(p):=X_{F_t(p)},$$

$$X := \chi_{\infty} \iota^* (j^2 \operatorname{id}_{\mathbb{R}} \otimes 1) (\iota^{-1})_* \left(\frac{\partial}{\partial x} \right),$$

 $J_\tau(p) := \begin{pmatrix} \det_{\mathsf{dv}} F_\tau \end{pmatrix}(p) \quad \text{with} \quad F_\tau^* \; \mathsf{dv} \equiv \begin{pmatrix} \det_{\mathsf{dv}} F_\tau \end{pmatrix} \mathsf{dv} \, .$

Since $U_t \mathscr{D} \subset \mathscr{D}$ for all $t \in \mathbb{R}$, Nelson's Lemma implies that A is essentially self-adjoint on \mathscr{D} .

Summing up:

- (i) H_0 is of class $C^1(A_0)$ in \mathcal{H}_0 ,
- (ii) $A = JA_0J^*$ is essentially self-adjoint on $\mathscr{D} = C^{\infty}_{c}(M)$,
- (iii) we have the compacity conditions between H, H_0, A_0 and J.

Thus, *H* has no singular continuous spectrum in $\mathbb{R} \setminus {\tau_j}_{j\geq 0}$ and the point spectrum of *H* in $\mathbb{R} \setminus {\tau_j}_{j\geq 0}$ is composed of eigenvalues of finite multiplicity and with no accumulation point.

Thank you !

References

- R. Froese and P. Hislop, Spectral analysis of second-order elliptic operators on noncompact manifolds, *Duke Math. J.*, 1989
- E. Mourre. Absence of singular continuous spectrum for certain selfadjoint operators. *Comm. Math. Phys.*, 1980/81
- S. Richard and R. Tiedra de Aldecoa. A few results on Mourre theory in a two-Hilbert spaces setting. *Anal. Math. Phys.*, 2013
- S. Richard and R. Tiedra de Aldecoa. Spectral analysis and time-dependent scattering theory on manifolds with asymptotically cylindrical ends. *Rev. Math. Phys.*, 2013