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1 Two-body scattering in R¢

o Hilbert space H (typically H = L*(R%))

e Free Hamiltonian Hy (typically Hy = h(P), with P := —iV and
he C'(RYR))

e Full Hamiltonian H (typically H=Hy + V)
e Complete wave operators, .e.

W, :=s lim e'tHe 'tHop, (Hy)
t—+oo

with Ran(W_) = Ran(W,) = H..(H)

— Unitary scattering operator S := Wi W_
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t — 4+o0

Figure 1: Wave operators W, and scattering operator S
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2 Time delay in terms of sojourn times

Take a function f € L>°(R¢) such that

(i) f decays to O at infinity,
(i) f =1 on a neighbourhood X of 0,
(iii) f(x) = f(—x) for almost every x € R (f is even).

Let ® = (Dq,...,D4) be a family of mutually commuting
self-adjoint operators in H.

— f(®/r), r > 0, is approximately the operator of localization in
EC(rI)H.

Example 2.1. Let H = L?(RY) and Q = (Q1,...,Q4) the family
of position operators in L2(R%). Then f(Q/r) is the localization
operator in By = {x € R | |x| <1} if f =x35,.
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Let @ € Hac(Ho), ||@]| =1, satisfy n(Ho)@ = ¢ for some
appropriate 1 € CSO( )

e Sojourn time of the freely evolving state e 'tHop in EP (rI)H:

TP (@) = JR dt (e "o, f(@/r)e o @)

e Sojourn time of the associated scattering state e ‘*HW_¢ in

EQ(rI)H:

T (@) == JR dt (e "M W_ o, f(@/r)e TW_o)
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Time delay in E® (rX)H for the scattering process with incoming

state @:

(definition introduced by Jauch, Misra, and Sinha in the 70’s, when
H = L?(RY), © = Q, f =x5, and Hy = —A)
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Figure 2: Interpretation of T (¢)



8-b/25

When f =x5,, Ho = —A, and H = Hy + V(Q) is short-range,

T8 () exists for each r > 0, and

tim (o) = [ ()N, =S S W), L
= <(P,TE-W(P>>

where U : H — f% 50) dA L2(S971) is the spectral transformation for
Ho and {S(A)}a>0 the scattering matrix for the pair (Ho, H).

This formula expresses the identity of global time delay (defined in

terms of sojourn times) and Eisenbud-Wigner time delay.

(Amrein, Cibils, Jensen, Martin, 80’s and 90’s)
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3 Symmetrised time delay

Alternate (symmetrised) definition:

T (@) = Te(@) — 3 [T (@) + T2 (So)]

Figure 3: Interpretation of t,(¢)
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For multichannel-type scattering processes, only the symmetrised
time delay exists.

Some examples where the existence of symmetrised time delay has
been established (for f(®/r) = x5, (Q/1)):

e Scattering for dissipative interactions (Martin 75),
e “N-body scattering” (Bollé-Osborn 79),
e Scattering in quantum waveguides (T06),

e Scattering for one-dimensionnal anisotropic potentials

(Amrein-Jacquet 07).
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Consider the scattering pair
Ho=—Ap and H=Ho+V(Q) in H=L*Z xR),

with f(CD/T‘) — XZX[—T,T](Q) =1 ®X[—r,r}(QR)°

In such a case, we have

lim TT((P) = <(P,TE—W(P>

T—00

for a large class of short-range potentials V(Q).

(but lim,_,o, T (@) does not exist!)
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Figure 4: Classical scattering in a waveguide: the usual time delay does
not exist because the longitudinal velocities before and after interaction
are not comparable
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4 Dispersive Hamiltonians

Consider now Hop = h(P) and ® = Q in H = L*(RY).

Assumption (hypoelliptic-type): The function h: R4 — R is of

class C™ for some m > 3, and satisfies the following conditions:
(i) [h(x)] = 00 as |x| = oo.

(ii) ngm (0%h)(x)| < Const. (1 + [h(x)]).

(iii) Yo [(0%R)(x)] < Const.

Commutators methods — Hj is purely a.c. in R\ «(Hp), with
k(Ho) :==h[(Vh)~T({0})].

Example 4.1. h can be an elliptic symbol of degree s > 0.
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5 Averaged localization functions

Take a function f € L°(R¢) decaying to 0 fast enough at infinity
such that f =1 on a neighbourhood of 0.

Then the function R¢ : R4\ {0} — C given by

J+OO d].l

Re(x) == — [f(1x) — xj0,17(1)]

0 M
is well-defined.

Example 5.1. If f is radial, i.e. f(x) = fo(|x|), then
Re(x) = Re, (1) — InJx,

and
(VR¢)(x) = —x?x.
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Theorem 5.2. Suppose that f € 8(R?Y) is even and satisfies f =1
on a neighbourhood of 0. Let h be as above. Then we have for
appropriate @ € H..(Ho)

i J dt (@, [ HRPIF(Q/r)etth(P) _ Gh(PIg(Q /r)o—Hh(P)] )

T—00 0
= (@, Tr o),
where

Tr:=—2[Q - (VRe) ((VR)(P)) + (VR¢) ((VR)(P)) - Q].
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Remark 5.3. If f is radial, Ts reduces to the operator

1 (YRP) L (TR(P)
T:=5(Q SOERRCDE Q).

In a suitable sense, one has

d
dh(P)

T, oHth(P)] = _geith(P) T3

Hence, if f is radial and Hg is purely a.c., the theorem gives

i J dt (@, [T PIE(Q/r)eth P — ¢Hh(PI(Q /r)e Hh(P)] )

T—00 0

. d(
— JG(HO) dA <(U(P)(7\)>1 ‘ ;i}\(p) (M>HA>

where U : H — fG(Ho) dA H, is a spectral transformation for
Ho = h(P).
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6 Existence of symmetrised time delay

Let H be any selfadjoint perturbation of Hy = h(P) satisfying the

following condition.
Assumption W_: The wave operators W exist and are

complete, and any operator T € B(D((Q)‘p),”ﬂ), with p > %, is
locally H-smooth on R\ {k(Ho) U o, (H)}.
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Theorem 6.1. Let f € 8(RY) be an even function such that f =1

on a neighbourhood of 0. Let h be as above. Suppose that

Assumption W4 holds. Then, we have for appropriate @ € Ha.(Ho)
lim T, (@) = — <(P, S*[T, S](p> .

T—00

Remark 6.2. If f is radial and Ho s purely a.c., we get the
wdentity of symmetrised time delay and Eisenbud-Wigner time delay

for dispersive Hamiltonians Ho = h(P):

im () = | . )dA<(u<p)m,—ism*M (Uep) (N))

m dA My
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7 Equality of symmetrised time delay

and usual time delay

Let F¢ : RY\ {0} — C be defined by

Fe(x) := JR dp f(px).

If p € RY and f is real, the number F¢(p) = fR dt f(tp) can be seen
as the sojourn time in the region defined by the localization
function f of a free classical particle moving along the trajectory
R >t — x(t) := tp.

H((Vh)(P)) is a “quantum analog” of F¢(p), since (Vh)(P) is the

quantum velocity operator.
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Theorem 7.1. Let f € S(RY) be even. Let h be as above. Suppose
that Assumption W4 holds. Assume that

[Fe((Vh)(P)),S] =0. (1)
Then, we have for appropriate @ € Hae(Ho)

lim [t"(@) — ()] =0.

T—00

Example 7.2. In the case of waveguides, the (natural) velocity
operator

1@Pr=i[—A5®1+1®P; 10 Qr| =i[—Ap, 1 ® Qg]

does not commute with the scattering operator S.
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Sketch of the proof:

Using the change of variables w:=t/r, v:=1/r, and the parity of
f, one gets

2 lim [Tr((p) —Tm((P)]

T—00

— lim dt <(P, 1th f(Q/r)e—ith(P), S](P>

T—00 JR

~ lim | dt (g, S* [ MPIF(Q/r)e P S]g)

T%OOUR

~ lim J du (@, $*[L{FIvVQ + w(VR)(P)] — F(1(VR)(P))}, ] )
vN\O Jp

_ JR du (@, S*[Q - (V) (u(Vh)(P)),S] @)
= Q.
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There are two simple situations where condition (1) is satisfied:

1. If h is a polynomial of degree 1, 7.e. h(x) = vg 4+ Vv - x for some
vo € R, v € R4\ {0}. Then Ff((Vh)(P)) reduces to the scalar F¢(v),

and thus it commutes with S.

(This covers the case of the Friedrichs Hamiltonian.)

2. If f and h are radial, i.e. f(x) = fo(|x|) and h(x) = ho(|x|) with
hy > 0 on R;. Then Ff((Vh)(P)) = Fy, (h(’)(IPI)) is diagonalizable
in the spectral representation of Hyp = h(P). So it commutes with

S.

(This covers the Schrodinger case ho(p) = p?, the square-root
Klein-Gordon case ho(p) = 4/1 + p?, and others.)
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8 Existence of usual time delay

Theorem 8.1. Let f € $(RY) be an even function such that f =1
on a neighbourhood of 0. Let h be as above. Suppose that
Assumption W4 holds. Assume that

[F¢((Vh)(P)),S] =0.
Then, we have for appropriate @ € Hae(Ho)

lim () = lim t,(¢) = — (@, S*[T¢, Slo) .

T—00 T—00
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9 Further developments

e The case when H is an abstract Hilbert space, (Ho,H) an
abstract scattering pair and ® = (®,...,D4) a general family

of mutually commuting self-adjoint operators.

e Time delay in terms of sojourn times in Hamiltonian

mechanics.
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