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1 Commutator methods for self-adjoint

operators

Commutator methods are a tool for the spetral theory and the

sattering theory of self-adjoint operators in Hilbert spaes.

They have been introdued by

�

Eri Mourre in the 80's for the

study of Shr�odinger operators in L2(R d) (and further developed by

Amrein, Boutet de Monvel, Georgesu, G�erard, Jensen, Perry,

Sahbani, . . . )
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1.1 Classical mechanics as a motivation

� M , sympleti/Poisson manifold with Poisson braket f� ; �g

� H 2 C

1

(M), Hamiltonian with omplete ow f'

t

g

t2R

� Hamiltonian evolution equation for an observable f 2 C

1

(M):

d

dt

f Æ '

t

=

�

f;H

	

Æ '

t

; t 2 R :
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For instane, if H(q; p) := jpj

2

+ V (q) on M := T

�

R

d

with

V 2 C

1



(R

d

), let's say that we don't want orbits bounded in jqj

2

.

We want something like:

t

jqj

2

Æ '

t
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Sine,

d

2

dt

2

jqj

2

Æ'

t

=

�

fjqj

2

; Hg; H

	

Æ'

t

, it is suÆient to hek that

�

fjqj

2

; Hg; H

	

� Æ > 0:

In the example H(q; p) = jpj

2

+ V (q), we get

�

fjqj

2

; Hg; H

	

=

��

jqj

2

; jpj

2

+ V (q)

	

; H

	

=

�

4(q � p); jpj

2

+ V (q)

	

= 8 jpj

2

� 4q � (rV )(q):

Thus, jpj

2

>

1
2

sup

q2R

n

�
�

q � (rV )(q)

�
�

implies lim

jtj!1

jqj

2

Æ '

t

= +1.

(If the kinetic energy jpj2 is large enough, all the trajectories go to

infinity . . . )
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To some extent, the idea behind ommutators methods for

self-adjoint operators is to translate the last example into the

language of the (quantum) Hilbertian theory with the following

heuristi ditionnary in mind:

Poisson manifold M  ! Hilbert spae H

Poisson braket f� ; �g  ! ommutator i [ � ; � ℄

Hamiltonian H 2 C

1

(M)  ! self-adjoint operator H in H

d

dt

f Æ '

t

=

�

f;H

	

Æ '

t

 !

d

dt

e

�itH

F

e

itH

=

e

itH

[iF;H℄

e

�itH

bounded orbits of H  ! eigenvalues of H
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1.2 Self-adjoint operators

References:

� W. O. Amrein, Hilbert Space Methods In Quantum Mechanics,

EPFL Press, 2009

� M. Reed and B. Simon, Methods of modern mathematical physics.

volumes I-IV, Academic Press, 1980

� J. Weidmann, Linear Operators in Hilbert Spaces, Springer Verlag,

1980
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An operator H with dense domain D(H) in a Hilbert spae H is

symmetri if




H'; 

�

=




';H 

�

for all '; 2 D(H):

A vetor � 2 H belongs to D(H

�

) if there exists �

�

2 H suh that




�

�

; '

�

=




�;A'

�

for all ' 2 D(H):

In this ase, one sets H

�

� := �

�

and one alls H

�

the adjoint of H.

A symmetri operator H is self-adjoint if

�

H;D(H)

	

=

�

H

�

;D(H

�

)

	

;

whih is veri�ed if and only if the ranges Ran(H � i) = H.
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If H is self-adjoint, then the set D(H) equipped with the inner

produt




'; 

�

D(H)

:=




'; 

�

+




H';H 

�

; ';  2 D(H);

and the indued norm

k'k

2
D(H)

:=




';'

�

D(H)

; ' 2 D(H);

de�nes a Hilbert spae (a omplete inner spae).

A subspae D � D(H) is a ore for H if the losure of D in D(H)

is equal to D(H); that is,

D

k�k

D(H)

= D(H):
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Example 1.1. The multipliation operator Q in H := L2(R )

given by

(Q')(x) := x'(x); ' 2 H

1

(R ) :=

�

' 2 H j

Z

R

�

1 + jxj

2

�

j'(x)j

2

<1

�

;

is self-adjoint.

Example 1.2. The operator P in H := L2(R ) given by

(P')(x) := �i'

0

(x); ' 2 H

1

(R ) := FH
1

(R );

with F the 1-dimensional Fourier transform, is self-adjoint.

(the operator P is just the Fourier transform of the operator Q; that

is, Q = FPF�1)

The spae S (R ) of Shwartz funtions on R is a ore for Q and P ,

sine S (R ) is dense in the (Sobolev) spaes H

1

(R ) and H

1

(R ).
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Let B(H) be the set of bounded operators on H and let H be a

self-adjoint operator H in H.

The set

�(H) :=

�

z 2 C j (H � z)

�1

exists and belongs to B(H)

	

is the resolvent set of H; it is an open subset of C .

The set �(H) := C n �(H) is the spetrum of H; it is a losed

subset of R .
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A spetral family on a Hilbert spae H is a funtion E : R ! B(H)

suh that

� E(�) is an orthogonal projetion for eah � 2 R , i.e.,

E(�) = E(�)

�

= E(�)

2

for eah � 2 R ;

� E(�) � E(�) for all � � �, i.e.,




';E(�)'

�

�




';E(�)'

�

for all ' 2 H; � � � (monotoniity);

� s- lim

"&0

E(�+ ") = E(�) for eah � 2 R (right ontinuity),

� s- lim

�!�1

E(�) = 0 and s- lim

�!1

E(�) = 1.

For intervals, one de�nes the spetral measure

E

�

(a; b℄

�

:= E(b)�E(a); E

�

(a; b)

�

:= s- lim

"&0

E(b�")�E(a); et.

and one extends these de�nitions to E(V) for any Borel set V � R .



1.2 Self-adjoint operators 13-a/115

Theorem 1.3 (Spetral theorem). A self-adjoint operator H in a

Hilbert spae H admits exatly one spetral family E

H

suh that

H =

Z

R

�E

H

(d�);

with the strong integral

R

R

�dE

H

(d�) satisfying

�

';

Z

R

�E

H

(d�) 

�

:=

Z

R

�




';E

H

(d�) 

�

; ' 2 H;  2 D(H):

Furthermore, one has for �1 < a < b <1 that

E

H

�

(a; b℄

�

=

1

�

s- lim

Æ&0

s- lim

"&0

Z

b+Æ

a+Æ

d� Im(H � �� i")

�1

:

(Stone’s Formula)
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Two omments:

� The support of the spetral family E

H

is the set of points of

non-onstany and oinides with the spetrum of H

supp

�

E

H

�

=

�

� 2 R j E

H

(�+")�E

H

(��") 6= 0 8" > 0

	

= �(H):

� Formally, one has

kH k

2

= hH ;H i =

Z

R

�

Z

R

�




E

H

(d�) ;E

H

(d�) 

�

=

Z

R

�

Z

R

�




 ;E

H

(d� \ d�) 

�

=

Z

R

�

2




 ;E

H

(d�) 

�

;

so that  2 D(H) if and only if

R

R

�

2




 ;E

H

(d�) 

�

<1:
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Example 1.4. The spetral projetion E

Q

(�) of the operator Q

in H := L2(R ) is the operator of multipliation by the

harateristi funtion �

(�1;�℄

, i.e.,

E

Q

(�)' := �

(�1;�℄

'; ' 2 H:

One veri�es that

�(Q) = supp

�

E

Q

�

= R :
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Example 1.5. The multipliation operator Q

2

:=

P

d
j=1

Q

2
j

in

H := L2(R d) given by

�

Q

2

'

�

(x) := x

2

'(x); ' 2 H

2

(R

d

); x

2

:=

d

X

j=1

x

2
j

;

is self-adjoint, and its spetral family is given by

E

Q

2

(�)' :=

8
<

:

�

[��

1=2

;�

1=2

℄

' if � > 0

0 if � � 0;

' 2 H:

One veri�es that

�

�

Q

2

�

= supp

�

E

Q

2

�

= [0;1):
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The Laplaian �4 in H := L2(R d) satis�es on S (R

d

) (and thus on

H

2

(R

d

))

�4 =

d

X

j=1

P

2

j

� P

2

= F

�1

Q

2

F ;

with F the d-dimensional Fourier transform. So, one has

E

�4

= E

F

�1

Q

2

F (Stone)

= F

�1

E

Q

2

F :
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Let A

B

be the Borel �-algebra of R and jVj be the Lebesgue

measure of V 2 A

B

.

If H is a self-adjoint operator in H, one has the orthogonal

deompositions

H = H

p

(H)�H

s

(H)�H

a

(H)

H = Hj

H

p

(H)

�Hj

H

s

(H)

�Hj

H

a

(H)

;

with

H

p

(H) := Span

�

eigenvetors of H

	

H

s

(H) :=

�

' 2 H j � 7! kE

H

(�)'k

2

is ontinuous

and 9V 2 A

B

with jVj = 0 and E

H

(V)' = '

	

H

a

(H) :=

�

' 2 H j � 7! kE

H

(�)'k

2

is absolutely ontinuous

	

:
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The subspaes H

p

(H), H

s

(H), H

a

(H) are the pure point

subspae of H, the singular ontinuous subspae of H and the

absolutely ontinuous subspae of H.

The deomposition of H indues a deomposition of �(H)

�(H) = �

p

(H) [ �

s

(H) [ �

a

(H);

with

�

p

(H) := �

�

Hj

H

p

(H)

�

the pure point spetrum of H;

�

s

(H) := �

�

Hj

H

s

(H)

�

the singular ontinuous spetrum of H;

�

a

(H) := �

�

Hj

H

a

(H)

�

the absolutely ontinuous spetrum of H:

The sets �

p

(H), �

s

(H), �

a

(H) are losed and (in general) not

mutually disjoint.
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Example 1.6. For eah � 2 R and ' 2 H := L2(R ), one has




E

Q

(�)'




2

=




�

(�1;�℄

'




2

=

Z

�

�1

dx j'(x)j

2

= integral of a L1-funtion

= absolutely ontinuous funtion:

So, H = H

a

(Q) and Q has purely absolutely ontinuous

spetrum �(Q) = �

a

(Q) = R :

In fat, Q has Lebesgue spetrum sine

e

itP

e

isQ

e

�itP

=

e

ist

e

isQ

; s; t 2 R ()

e

itP

Q

e

�itP

= Q+t; t 2 R :

( . . . Stone-von Neumann theorem . . . )
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Example 1.7. Let f : [0; 1℄! [0; 1℄ be the Cantor funtion, and

let

M

f

' := f '; ' 2 H := L2([0; 1℄);

be the orresponding bounded multipliation operator.
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The spetral family of M

f

is

E

M

f

(�)' :=

8
<

:

�

f

�1

([0;�℄)

' if � 2 [0; 1℄

0 if � 2 R n [0; 1℄;

' 2 H:

One veri�es that

�(M

f

) = supp

�

E

Q

2

�

= Cantor ternary set

and that the funtion

[0; 1℄ 3 � 7!




E

M

f

(�)'




2

=




�

f

�1

([0;�℄)

'




2

=

Z

1

0

dx�

f

�1

([0;�℄)

(x)j'(x)j

2

is ontinuous but not absolutely ontinuous.

So, H = H

s

(M

f

) and M

f

has purely singular ontinuous

spetrum �(M

f

) = �

s

(M

f

) = Cantor ternary set.
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An interesting link between spetral theory and dynamis is

provided by the following:

Theorem 1.8 (RAGE theorem). Let H be a self-adjoint

operator in a Hilbert spae H and let C 2 B(H) be suh that

C(H + i)

�1

is ompat. Then,

lim

T!1

1

2T

Z

T

�T

dt




C

e

�itH

'




2

= 0 for all ' 2 H

s

(H)�H

a

(H):

RAGE theorem says that, as time evolves, the state ' in the

ontinuous subspae of H esapes (in Ces�aro mean) from the range

of the operator C.

(the typical example is when H is a Schrödinger operator in R

d and C

the orthogonal projection onto a compact subset of R d)
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1.3 Commutator methods for self-adjoint

operators

References:

� W. O. Amrein, A. Boutet de Monvel and V. Georgescu,

C

0

-groups, commutator methods and spectral theory of N -body

Hamiltonians, Birhäuser, 1996

� É. Mourre, Absence of singular continuous spectrum for certain

selfadjoint operators, Comm. Math. Phys., 1980/81.

� J. Sahbani, The conjugate operator method for locally regular

Hamiltonians, J. Operator Theory, 1997.
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� H, Hilbert spae with norm k � k and salar produt h � ; � i

� B(H), set of bounded linear operators on H

� K (H), set of ompat operators on H

� A;H, self-adjoint operators in H with domains D(A);D(H),

spetral families E

A

( �), E

H

( �) and spetra �(A); �(H)

� The adjoint spae of a Banah spae B is de�ned by

B

�

:=

�

anti-linear ontinuous funtions � : B ! C

	

k�k

B

�

:= sup

�

j�(')j j ' 2 B; k'k

B

� 1
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Definition 1.9. An operator S 2 B(H) satis�es S 2 C

k

(A) if

the map

R 3 t 7!

e

�itA

S

e

itA

2 B(H)

is strongly of lass C

k

.

In other terms, S 2 C

k

(A) if there exist

B

0

(t) �

e

�itA

S

e

itA

; B

1

(t); B

2

(t); : : : ; B

k

(t) 2 B(H); t 2 R ;

suh that

lim

h!0






B

j

(t+ h)�B

j

(t)

h

'�B

j+1

(t)'






= 0 for all t 2 R ; ' 2 H;

for j = 0; 1; : : : ; k � 1.
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S 2 C

1

(A) if and only if the quadrati form

D(A) 3 ' 7!




A'; S'

�

�




'; SA'

�

2 C

is ontinuous for the topology indued by H on D(A); that is, if

�
�




A'; S'

�

�




'; SA'

�

�
�

� Const:k'k

2

for all ' 2 D(A):

The bounded operator orresponding to the ontinuous extension

of the quadrati form is denoted by [A;S℄, and one has

�[iA; S℄ = s-

d

dt

e

�itA

S

e

itA

�
�
�

t=0

2 B(H):
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Example 1.10. Let f 2 L1(R ) be an absolutely ontinuous

funtion with f

0

2 L1(R ), and let

M

f

' := f '; ' 2 H := L2(R );

be the orresponding bounded multipliation operator.

Then, one has for eah ' 2 H

d

dt

e

�itP

M

f

e

itP

' =

d

dt

M

f( � �t)

' = �M

f

0

( � �t)

';

and thus M

f

2 C

1

(P ) with [iP;M

f

℄ =M

f

0

.
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In the ase of (unbounded) self-adjoint operators, we have a similar

de�nition:

Definition 1.11. A self-adjoint operator H is of lass C

k

(A) if

(H � z)

�1

2 C

k

(A) for some z 2 �(H).

If H is of lass C

1

(A), then

�

A; (H � z)

�1

�

= (H � z)

�1

[H � z; A℄(H � z)

�1

= (H � z)

�1

[H;A℄(H � z)

�1

;

with [H;A℄ the bounded operator from D(H) to D(H)

�

assoiated

with the ontinuous extension to D(H) of the quadrati form

D(H) \ D(A) 3 ' 7!




H';A'

�

�




A';H'

�

2 C :
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Theorem 1.12 (Virial Theorem). Let A;H be self-adjoint

operators with H of lass C

1

(A). Then,

E

H

(f�g)[A;H℄E

H

(f�g) = 0 for eah � 2 R .

Thus, one has




'; [A;H℄'

�

= 0 if ' is an eigenvetor of H.
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Proof. We must show that if '

1

; '

2

2 D(H) satisfy H'

j

= �'

j

for

some � 2 R , then




'

1

; [A;H℄'

2

�

= 0.

But,




'

1

; [A;H℄'

2

�

=




(�� i)(H � i)

�1

'

1

; [A;H℄(�+ i)(H + i)

�1

'

2

�

= �(�+ i)

2




'

1

;

�

A; (H + i)

�1

�

'

2

�

= �(�+ i)

2

lim

�!0




'

1

;

�

1

i�

(

e

i�A

�1); (H + i)

�1

�

'

2

�

= �(�+ i)

2

lim

�!0

1

i�

n




'

1

;

e

i�A

(H + i)

�1

'

2

�

�




(H � i)

�1

'

1

;

e

i�A

'

2

�

o

= �(�+ i)

2

lim

�!0

1

i�

f0g:



1.3 Commutator methods for self-adjoint operators 32-/115

Corollary 1.13 (Point spetrum of H). Let A;H be self-adjoint

operators with H of lass C

1

(A). Assume there exist a Borel

set I � R , a number a > 0 and K 2 K (H) suh that

E

H

(I) [iH;A ℄E

H

(I) � aE

H

(I) +K: (1.1)

Then, H has at most �nitely many eigenvalues in I

(multipliities ounted).

Some omments:

� If I is bounded, one has

E

H

(I)

| {z }

2B(D(H)

�

;H)

[iH;A ℄

| {z }

2B(D(H);D(H)

�

)

E

H

(I)

| {z }

2B(H;D(H))

2 B(H):

� If I is not bounded, the inequality (1.1) holds in the sense of

quadrati forms on D(H).

� The inequality (1.1) is alled a Mourre estimate.
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Proof. If ' 2 H is an eigenvetor of H with k'k = 1 and with

eigenvalue in I, the Mourre inequality (1.1) implies that

0 � a




';E

H

(I)'

�

+




';K'

�

=)




';K'

�

� �a:

Now, if the laim were false, there would exist an in�nite

orthonormal sequene f'

j

g of eigenvetors of H in E

H

(I)H. In

partiular, one would have w- lim

j!1

'

j

= 0. Sine K 2 K (H),

this would imply that lim

j!1




'

j

; K'

j

�

= 0, whih ontradits

the inequality




'

j

; K'

j

�

� �a < 0.

Note that the proof shows that if K = 0, then H is purely

ontinuous in I \ �(H).
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Example 1.14 (Finite dimension). If dim(H) <1, then A;H

are hermitian matries and H 2 C

1

(A).

Furthermore, one has

[iH;A℄ = 1 +

�

[iH;A℄� 1

�

= 1 + ompat operator;

and the orollary implies (without surprise) that H has at most

�nitely many eigenvalues in �(H).
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Definition 1.15. S 2 C1+0

(A) if S 2 C

1

(A) and

Z

1

0

dt

t




e

�itA

[A;S℄

e

itA

�[A;S℄




B(H)

<1:

Similarly, a self-adjoint operator H is of lass C

1+0

(A) if

(H � z)

�1

2 C

1+0

(A) for some z 2 �(H).

If we regard C

1

(A), C

1+0

(A) and C

2

(A) as subspaes of B(H), we

have the inlusions

C

2

(A) � C

1+0

(A) � C

1

(A) � B(H):



1.3 Commutator methods for self-adjoint operators 36-b/115

Example 1.16. Let f 2 L1(R ) be an absolutely ontinuous

funtion with f

0

2 L1(R ) Dini-ontinuous, and let M

f

be the

orresponding multipliation operator in H := L2(R ).

Then, we know that M

f

2 C

1

(P ) with [iP;M

f

℄ =M

f

0

, and

Z

1

0

dt

t




e

�itP

[P;M

f

℄

e

itP

�[P;M

f

℄




B(H)

=

Z

1

0

dt

t




M

f

0

( � �t)�f

0




B(H)

=

Z

1

0

dt

t




f

0

( � � t)� f

0




L1(R)

<1

due to the Dini-ontinuity of f

0

. So, one has M

f

2 C

1+0

(P ).
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Spectral result of Mourre

(and Amrein, Boutet de Monvel, Georgescu,

Sahbani, . . . )

Theorem 1.17 (Spetral properties of H). Let H be of lass

C

1+0

(A). Assume there exist an open set I � R , a number

a > 0 and K 2 K (H) suh that

E

H

(I) [iH;A ℄E

H

(I) � aE

H

(I) +K:

Then, H has at most �nitely many eigenvalues in I

(multipliities ounted), and H has no singular ontinuous

spetrum in I.
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Some omments:

� the operator A is alled a onjugate operator for H on I

� if K = 0, then H is purely absolutely ontinuous in I \ �(H)

� if H has a spetral gap or satis�es an additional invariane

assumption, then one an replae the ondition C

1+0

(A) by a

weaker ondition C

1;1

(A)
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Sketch of the proof of Mourre (i)
One has for � 2 �(H) and " 2 R that




(H � �� i")

�1




=




x 7! (x� �� i")

�1




L1(R)

= j"j

�1

:

Thus, (H � �� i")

�1

annot have a limit in B(H) as "! �0.

However, for some ' 2 H n f0g, the holomorphi funtion

F : �(H)! C ; z 7!




'; (H � z)

�1

'

�

;

may have a limit

F (�) := lim

"&0

F (�+ i")

uniformly on eah interval [a; b℄ � I.
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In suh a ase, Stone's Formula and Lebesgue's dominated

onvergene theorem imply for � 2 (a; b℄ that




E

H

�

(a; �℄

�

'




2

=




';E

H

�

(a; �℄

�

'

�

=

1

�

Z

�

a

d� ImF (�):

But, F is ontinuous on [a; b℄ due to the uniform onvergene of the

sequene F

"

( �) :=




';

�

H � ( �)� i"

�

�1

'

�

: Thus,

ImF (�) 2 L1([a; b℄) and E

H

(I)' 2 H

a

(H):

Therefore, if there is a dense set of vetors ' 2 H satisfying what

preedes, then E

H

(I)H � H

a

(H) and H is purely absolutely

ontinuous in I \ �(H).
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Sketch of the proof of Mourre (ii)
Let's show the existene of the limit lim

"&0

F (�+ i") in the

homogeneous ase [iH;A℄ = H.

(in such case, one has e�itAH e

itA

=

e

t

H, and thus we already know

that H has homogeneous spectrum on R n f0g)

One has for z 2 �(H)

z

d

dz

(H � z)

�1

= z (H � z)

�2

= (H � z)

�1

H(H � z)

�1

� (H � z)

�1

=

�

iA; (H � z)

�1

�

� (H � z)

�1

whih gives for ' 2 D(A)

z

d

dz

F (z) = �F (z)�




iA'; (H � z)

�1

�

�




(H � �z)

�1

'; iA'

�

:
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But, if z = �+ i" with " > 0, then




(H � �� i")

�1

'




2

=




(H � �+ i")

�1

'




2

=




'; jH � �� i"j

�2

'

�

=

�
�




'; "

�1 Im(H � �� i")

�1

'

�

�
�

= "

�1

�
� ImF (�+ i")

�
�

:
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Thus, we get for z = �+ i" with � 6= 0 �xed and " > 0 that

�
�
�
�

z

d

dz

F (z)

�
�
�
�

=

�
�

� F (z)�




iA'; (H � z)

�1

�

�




(H � �z)

�1

'; iA'

�

�
�

=) j�+ i"j

�
�
�
�

d

d"

F (�+ i")

�
�
�
�

�

�
�

F (�+ i")

�
�

+ 2kA'k




(H � �� i")

�1

'




=)

�
�
�
�

d

d"

F (�+ i")

�
�
�
�

�

1

j�j

�

k'k+ 2kA'k

�




(H � �� i")

�1

'




=)

�
�
�
�

d

d"

F (�+ i")

�
�
�
�

�

1

j�j

�

k'k+ 2kA'k

�

"

�1=2

�
�

F (�+ i")

�
�

1=2

:
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Now,

�
�

F (�+ i")

�
�

�

�
� ImF (�+ i")

�
�

= "




(H � �� i")

�1

'




2

> 0

if " > 0 and ' 6= 0.

So, one an divide the last inequality by

�
�

F (�+ i")

�
�

1=2

to get

�
�

d

d"

F (�+ i")

�
�

�
�

F (�+ i")

�
�

1=2

�

1

j�j

�

k'k+ 2kA'k

�

"

�1=2

()

�
�
�
�

d

d"

F (�+ i")

1=2

�
�
�
�

�

1

j�j

�

k'k+ 2kA'k

�

1

2"

1=2

R

1

"

d"

=)

�
�

F (�+ i)

1=2

� F (�+ i")

1=2

�
�

�

1

j�j

�

k'k+ 2kA'k

�

(1� "

1=2

)

"2(0;1)

=)

�
�

F (�+ i")

�
�

1=2

�

�
�

F (�+ i)

�
�

1=2

+

1

j�j

�

k'k+ 2kA'k

�

:
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Putting the last estimate in the inequality

�
�
�
�

d

d"

F (�+ i")

�
�
�
�

�

1

j�j

�

k'k+ 2kA'k

�

"

�1=2

�
�

F (�+ i")

�
�

1=2

;

one gets for eah j�j � Æ > 0 and " 2 (0; 1)

�
�
�
�

d

d"

F (�+ i")

�
�
�
�

�

1

j�j

�

k'k+ 2kA'k

�

"

�1=2

�

�
�

F (�+ i)

�
�

1=2

+

1

j�j

�

k'k+ 2kA'k

�

�

�

1
Æ

�

k'k+ 2kA'k

�

"

�1=2

�

k'k+

1
Æ

�

k'k+ 2kA'k

�

�

� (Æ; ')"

�1=2

�

k'k

2

+ kA'k

2

�

:
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It follows that

�

F (�+ i=m)

	

m2N

�

is a Cauhy sequene sine

�
�

F (�+ i=m)� F (�+ i=n)

�
�

=

�
�
�
�
�

Z

1=m

1=n

d"

d

d"

F (�+ i")

�
�
�
�
�

� (Æ; ')

�

k'k

2

+ kA'k

2

�

�
�
�
�
�

Z

1=m

1=n

d" "

�1=2

�
�
�
�
�

= 2(Æ; ')

�

k'k

2

+ kA'k

2

�

�
�

m

�1=2

� n

�1=2

�
�

! 0 as m;n!1:

Thus, the limit lim

"&0

F (�+ i") exists uniformly on j�j � Æ.
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1.4 Schrödinger operators
Let M

V

be the self-adjoint multipliation operator in H := L2(R )

given by V 2 L1(R ; R ). Then, the 1-dimensional Shr�odinger

operator

H' := �4'+M

V

'; ' 2 D(H) := H

2

(R );

is self-adjoint due to the Kato-Rellih theorem.

(self-adjointness is preserved under the perturbation by a bounded

self-adjoint operator)

In quantum mehanis, the operator H desribes a non-relativisti

partile in R in presene of a salar (eletri) potential V .
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Can we (under some assumptions on V ) determine the

spectral nature of H ?

Can we do it using commutator methods ?
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The family of operators fU

t

g

t2R

in H given by

(U

t

')(x) :=

e

t=2

'(

e

t

x); ' 2 S (R ); x; t 2 R ;

de�nes a strongly ontinuous unitary group (the dilation group).

The self-adjoint generator A := i

�

s-

d

dt

U

t

�
�

t=0

�

of fU

t

g

t2R

ats as

A' :=

1
2

�

QP + PQ

�

'; ' 2 S (R ):



1.4 Shr�odinger operators 50-a/115

The operator A is the quantum analogue of the lassial observable

q � p on M := T

�

R whih appeared at the beginning:

��

q

2

; p

2

+ V (q)

	

; p

2

+ V (q)

	

=

�

4(q � p); p

2

+ V (q)

	

= 8p

2

� 4q � (rV )(q):

. . . just replae the observables q and p on M := T

�

R by the

self-adjoint operators Q and P in H, and be autious with the

domains and the self-adjointness of the unbounded operators . . .
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One has

e

�itA

(�4+ i)

�1

e

itA

= F

�1

(F e

�itA

F

�1

)F (�4+ i)

�1

F

�1

(F e

itA

F

�1

)F

= F

�1

U

�t

�

Q

2

+ i

�

�1

U

t

F

= F

�1

�

(

e

�t

Q)

2

+ i

�

�1

F

=

�

e

�2t

(�4) + i

�

�1

:

Thus,

s-

d

dt

e

�itA

(�4+ i)

�1

e

itA

�
�
�

t=0

= (�4+ i)

�1

2(�4)(�4+ i)

�1

;

and �4 is of lass C

1

(A) with [iA;�4℄ = �2(�4).
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Similarly, one has

e

�itA

M

V

e

itA

=M

V (

e

t

� )

:

Thus, if V is absolutely ontinuous with id

R

�V

0

2 L1(R ), one has

s-

d

dt

e

�itA

M

V

e

itA

�
�
�

t=0

=M

id

R

�V

0

;

and M

V

2 C

1

(A) with [iA;M

V

℄ =M

id

R

�V

0

.

Furthermore, if V

0

is Dini-ontinuous, one has M

V

2 C

1+0

(A) sine

Z

1

0

dt

t




e

�itA

[A;M

V

℄

e

itA

�[A;M

V

℄




B(H)

=

Z

1

0

dt

t




(id

R

�V

0

)(

e

t

� )� id

R

�V

0




L1(R)

<1:
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We infer that H is of lass C

1+0

(A), with

[iH;A℄ = 2(�4)�M

id

R

�V

0

= 2H �M

(2V�id

R

�V

0

)

:

Now, assume that

lim

jxj!1

�

2V � id

R

�V

0

�

(x) = 0:

Then, a standard result tells us that

M

(2V�id

R

�V

0

)

(�4+ i)

�1

2 K (H):

(the products f(Q)g(P ) with f; g 2 C(R ) vanishing at infinity are

compact operators)



1.4 Shr�odinger operators 54-d/115

Given an open bounded set I � R , it follows that

E

H

(I) [iH;A ℄E

H

(I)

= 2E

H

(I)HE

H

(I)� E

H

(I)M

(2V�id

R

�V

0

)

E

H

(I)

� 2 inf(I)E

H

(I)� E

H

(I)M

(2V�id

R

�V

0

)

(�4+ i)

�1

(�4+ i)E

H

(I)

= 2 inf(I)E

H

(I) + ompat operator.

Thus, Theorem 1.17 implies that H has at most �nitely many

eigenvalues in eah open bounded set I � (0;1) (multipliities

ounted), and that H has no singular ontinuous spetrum in

(0;1).

(in fact, since M
V

(�4+ i)

�1 is compact, one has �
ess

(H) = [0;1),

so that �
s

(H) = ? and �
a

(H) = [0;1))
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Countless variations/generalisations of this example an be found

in the literature:

� the potential V may have singularities (for instane of

Coulomb-type)

� the potential V may have anisotropies at in�nity

� the Shr�odinger operator H may ontain a magneti �eld

� the Shr�odinger operator H an be replaed by an N -body

Shr�odinger operator

� the Shr�odinger operator H an be replaed by a quantum �eld

Hamiltonian

� the Shr�odinger operator H an be replaed by a Dira

operator
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� the operator �4 an be replaed by the Laplae-Beltrami

operator (on funtions or di�erential forms) on various types of

non-ompat manifolds

M



M

1

� the operator �4 an be replaed by the ombinatorial

Laplaian (adjaeny matrix) on various types of in�nite graphs

� et . . .
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1.5 Time changes of horocycles flows

References:

� G. Forni and C. Ulcigrai, Time-changes of horocycle flows,

J. Mod. Dyn., 2012

� R. Tiedra, Spectral analysis of time changes of horocycle flows,

J. Mod. Dyn., 2012.

� R. Tiedra, Commutator methods for the spectral analysis of

uniquely ergodic dynamical systems, preprint on arXiv
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Horocycle flow

� �, ompat Riemann surfae of genus � 2

� M := T

1

�, unit tangent bundle of �

� �




, probability measure on M indued by a volume form 


The horoyle ow fF

1;t

g

t2R

and the geodesi ow fF

2;t

g

t2R

are

one-parameter groups of di�eomorphisms on M .

Both ows orrespond to right translations on M when

M ' � n PSL(2; R ), for some oompat lattie � in PSL(2; R ).
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Geodesi in the Poinar�e half plane
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Horoyle ow in the Poinar�e half plane
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The operators

U

j

(t)' := ' Æ F

j;t

; t 2 R ; ' 2 C(M);

de�ne strongly ontinuous unitary groups in H := L2(M;�



) with

essentially self-adjoint generators

H

j

' := �iL

X

j

'; ' 2 C

1

(M);

where X

j

is the divergene-free vetor �eld assoiated with

fF

j;t

g

t2R

and L

X

j

the orresponding Lie derivative.

The horoyle ow fF

1;t

g

t2R

is uniquely ergodi [Furstenberg73℄,

mixing of all orders [Marus78℄, and U

1

(t) has ountable Lebesgue

spetrum for eah t 6= 0 [Parasyuk53℄.
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The horoyle ow and the geodesi ow satisfy the ommutation

relation (see for instane [Bahir/Mayer00℄)

U

2

(s)U

1

(t)U

2

(�s) = U

1

(

e

s

t); s; t 2 R ; (1.2)

whih is a onsequene of the matrix identity in SL(2; R ) :

0
�

e

s=2

0

0

e

�s=2

1
A

0
�

1 t

0 1

1
A

0
�

e

�s=2

0

0

e

s=2

1
A

=

0
�

1

e

s

t

0 1

1
A

:

Therefore, by applying the strong derivatives

d

dt

�
�

t=0

and

d

ds

�
�

s=0

to

(1.2), one obtains that H

1

is of lass C

1

(H

2

) with

�

iH

1

; H

2

�

= H

1

:
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Time changes of horocycle flows
Consider a C

1

vetor �eld with the same orientation and

proportional to X

1

; that is, fX

1

with f 2 C

1

�

M ; (0;1)

�

.

The reparametrised time oordinate h(p; t) given by

t =

Z

h(p;t)

0

ds

f

�

F

1;s

(p)

�

; t 2 R ; p 2M;

is suh that h(p; 0) = 0, lim

t!�1

h(p; t) = �1 and

d

dt

h(p; t) = f

�

F

1;h(p;t)

(p)

�

.

The funtion R 3 t 7!

e

F

1;t

(p) 2M given by

e

F

1;t

(p) := F

1;h(p;t)

(p)

satis�es

d

dt

e

F

1

(p; t) = (fX

1

)

e

F

1

(p;t)

;

e

F

1

(p; 0) = p;

and thus f

e

F

1;t

g

t2R

is the ow of fX

1

.
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The operators

e

U

1

(t)' := ' Æ

e

F

1;t

; t 2 R ; ' 2 C(M);

de�ne a strongly ontinuous unitary group in

e

H := L2(M;�



=f).

The generator

e

H := �iL

fX

1

of f

e

U

1

(t)g

t2R

is essentially self-adjoint

on C

1

(M) and unitarily equivalent to the operator in H given by

H := f

1=2

H

1

f

1=2

:

(. . . the unitary operator U : H !

e

H, ' 7! f

1=2

' realises the unitary

equivalence . . . )
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What is the spectral nature of f

H

(or equivalently of H)?
� Spetral properties are in general not preserved under time

hanges even though basi ergodi properties are preserved

under time hanges.

� In 1974, Kushnirenko shows that the ow f

e

F

1;t

g

t2R

is strongly

mixing if f is of lass C

1

and f �L

X

2

(f) > 0. So,

e

H has

purely ontinuous spetrum in R n f0g in this ase.

� In 2006, Katok and Thouvenot onjeture that

e

H has absolute

ontinuous spetrum (and even ountable Lebesgue spetrum)

if f is suÆiently smooth.
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Mourre estimate
Let z 2 C n R and assume for a moment that f � 1, so that

H � H

1

. Then, one has (H + z)

�1

2 C

1

(H

2

) with

�

i(H + z)

�1

; H

2

�

= �(H + z)

�1

[iH;H

2

℄(H + z)

�1

= �(H + z)

�1

H(H + z)

�1

:

It follows that

�

i

�

H

2

+ 1

�

�1

; H

2

�

= (H + i)

�1

�

i(H � i)

�1

; H

2

�

+

�

i(H + i)

�1

; H

2

�

(H � i)

�1

= �

�

H

2

+ 1

�

�1

H(H � i)

�1

� (H + i)

�1

H

�

H

2

+ 1

�

�1

= �

�

H

2

+ 1

�

�1

H(H + i)

�

H

2

+ 1

�

�1

�

�

H

2

+ 1

�

�1

(H � i)H

�

H

2

+ 1

�

�1

= �

�

H

2

+ 1

�

�1

2H

2

�

H

2

+ 1

�

�1

:
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Thus H

2

is of lass C

1

(H

2

) with [iH

2

; H

2

℄ = 2H

2

, and

E

H

2

(I)

�

iH

2

; H

2

�

E

H

2

(I) = E

H

2

(I)2H

2

E

H

2

(I) � 2 inf(I)E

H

2

(I)

for eah open bounded set I � (0;1).

Therefore, in the ase f � 1, Mourre's theorem applies to the

operator H

2

on the interval (0;1).

So, let’s try the same approach in the case f 6� 1 . . .
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If f 6� 1, one has (H + z)

�1

2 C

1

(H

2

) with

�

i(H + z)

�1

; H

2

�

= �(H + z)

�1

(Hg + gH)(H + z)

�1

and

g :=

1
2

�

1
2

L

X

2

�

ln(f)

�

:

(note that g �
f �L

X

2

(f)

2f

> 0 under Kushnirenko’s condition)

A alulation as in the ase f � 1 shows that

�

i

�

H

2

+1

�

�1

; H

2

�

= �

�

H

2

+1

�

�1

�

H

2

g+2HgH+ gH

2

��

H

2

+1

�

�1

;

whih means that (H

2

+ 1)

�1

2 C

1

(H

2

) with

�

iH

2

; H

2

�

= H

2

g + 2HgH + gH

2

:
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If g > 0 and f is of lass C

2

, one has

H

2

g + gH

2

=

�

H

2

; g

1=2

�

g

1=2

+ 2g

1=2

H

2

g

1=2

+ g

1=2

�

g

1=2

; H

2

�

�

�

H

2

; g

1=2

�

g

1=2

+ g

1=2

�

g

1=2

; H

2

�

= H

�

H; g

1=2

�

g

1=2

+

�

H; g

1=2

�

Hg

1=2

+ g

1=2

�

g

1=2

; H

�

H + g

1=2

H

�

g

1=2

; H

�

= H

�

H; g

1=2

�

g

1=2

+

�

H; g

1=2

�

g

1=2

H +

�

H; g

1=2

��

H; g

1=2

�

+ g

1=2

�

g

1=2

; H

�

H +Hg

1=2

�

g

1=2

; H

�

+

�

g

1=2

; H

��

g

1=2

; H

�

= H

�

H; g

1=2

�

g

1=2

+

�

H; g

1=2

�

g

1=2

H + 2

�

H; g

1=2

�

2

+ g

1=2

�

g

1=2

; H

�

H

+Hg

1=2

�

g

1=2

; H

�

= 2

�

H; g

1=2

�

2

� 0:
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Thus, making everything rigorous, one obtains that

E

H

2

(I)

�

iH

2

; H

2

�

E

H

2

(I)

= E

H

2

(I)

�

H

2

g + 2HgH + gH

2

�

E

H

2

(I)

� aE

H

2

(I) with a := 2 inf(I) � inf

p2M

g(p) > 0

for eah bounded open set I � (0;1).

Sine we also have (H

2

+ 1)

�1

2 C

2

(H

2

), we onlude by Mourre's

theorem that H

2

is purely absolutely ontinuous outside f0g, where

it has a simple eigenvalue orresponding to the onstant funtions.

Standard arguments then imply that H has the same spetral

properties as H

2

.
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Summing up:

Theorem 1.18. Under Kushnirenko's ondition and for time

hanges f of lass C

2

, the self-adjoint operator

e

H assoiated

with the vetor �eld fX

1

has purely absolutely ontinuous

spetrum, exept at 0, where it has a simple eigenvalue.

Proof. H and

e

H are unitarily equivalent.

In fat, this also holds for nonompat surfaes � of �nite volume.

Fine, but... Forni and Uligrai have obtained the same result (and

also Lebesgue maximal spetral type) without assuming

Kushnirenko's ondition (for ompat surfaes and for time hanges

in a Sobolev spae of order > 11=2).



1.5 Time hanges of horoyles ows 72/115

So, can we get rid off Kushnirenko’s condition ?
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Mourre estimate (one more time)

Lemma 1.19 (Conjugate operator). Let f 2 C

3

�

M ; (0;1)

�

and

L > 0. Then, the operator

A

L

' :=

1

L

Z

L

0

dt

e

itH

H

2

e

�itH

'; ' 2 C

1

(M);

is essentially self-adjoint in H.

Idea of the proof. A alulation on C

1

(M) shows that

1

L

Z

L

0

dt

e

itH

H

2

e

�itH

= �i

�

L

X

+

1
2

div




X

�

;

for a ertain vetor �eld X on M . Furthermore, if f is of lass C

3

,

then the r.h.s. is the self-adjoint generator of a strongly ontinuous

unitary group (see [Abraham/Marsden78℄).

( . . . if someone knows how to do it for f of class C2 . . . )
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Replaing H

2

by A

L

in the previous alulations and noting that

1

L

Z

L

0

dt

e

itH

g

e

�itH

=

1

L

Z

L

0

dt

e

itU

�

e

HU

g

e

�itU

�

e

HU

=

1

L

Z

L

0

dt U

�

e

it

e

H

g

e

�it

e

H

U

=

1

L

Z

L

0

dt

�

g Æ

e

F

1;�t

�

;

we obtain that (H

2

+ 1)

�1

2 C

2

(A

L

) with

�

i(H

2

+1)

�1

; A

L

�

= �(H

2

+1)

�1

�

H

2

g

L

+2Hg

L

H+g

L

H

2

�

(H

2

+1)

�1

;

where

g

L

:=

1

L

Z

L

0

dt

�

g Æ

e

F

1;�t

�

:
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The ow f

e

F

1;t

g

t2R

is uniquely ergodi, sine it is a reparametrised

version of the uniquely ergodi ow fF

1;t

g

t2R

[Humphries74℄.

So, the Ces�aro mean g

L

=

1

L

R

L

0

dt

�

g Æ

e

F

1;�t

�

onverges uniformly

on M to

R

M

de�




g

L

; that is,

lim

L!1

g

L

=

Z

M

de�




g

L

=

1
2

�

1
2

Z

M

de�




L

X

2

�

ln(f)

�

=

1
2

+

1

2

R

M

f

�1

d�




Z

M

d�




L

X

2

�

f

�1

�

=

1
2

+

i

2

R

M

f

�1

d�







1; H

2

f

�1

�

=

1
2

:

=) g

L

> 0 if L > 0 is big enough.



1.5 Time hanges of horoyles ows 76-b/115

So, we got rid o� Kushnirenko's ondition, and thus have proved

the following:

Theorem 1.20. For time hanges f of lass C

3

, the

self-adjoint operator

e

H assoiated with the vetor �eld fX

1

has

purely absolutely ontinuous spetrum, exept at 0, where it

has a simple eigenvalue.

( . . . if someone knows how to prove countable Lebesgue spectrum . . . )
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2 Commutator methods for unitary

operators

Commutator methods for unitary operators is the unitary analogue

of ommutator methods for self-adjoint operators.

The theory applies to general unitary operators U (not neessarily

of the type

e

iH

), up to the regularity lass C

1+0

(A).
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2.1 Unitary operators
A unitary operator U in a Hilbert spae H is a surjetive isometry;

that is,

U

�

U = UU

�

= 1:

Sine U

�

U = UU

�

, the spetral theorem for normal operators

implies that U admits exatly one omplex spetral family E

U

with

support

supp(E

U

) = �(U) � S

1

:=

�

z 2 C j jzj = 1

	

suh that

U =

Z

C

z E

U

(dz);

where E

U

(�+ i�) := E

Re(U)
(�)E

Im(U)

(�) for eah �; � 2 R , and

Re(U) :=
1

2

(U + U

�

) and Im(U) :=

1

2i

(U � U

�

):
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Example 2.1 (1-parameter groups of unitary operators). If H is

a self-adjoint operator in a Hilbert spae H, then

U

t

:=

e

�itH

is a unitary operator for eah t 2 R , and the family fU

t

g

t2R

de�nes a strongly ontinuous 1-parameter group of unitary

operators.

Example 2.2 (Koopman operator). Let T : X ! X be an

automorphism of a probability spae X with probability measure

�. Then, the Koopman operator U

T

in H := L2(X;�) given by

U

T

: H ! H; ' 7! ' Æ T;

is a unitary operator.
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Ergodiity, weak mixing and strong mixing of an automorphism

T : X ! X are expressible in terms of spetral properties of the

Koopman operator U

T

:

� T is ergodi if and only if 1 is a simple eigenvalue of U

T

.

� T is weakly mixing if and only if U

T

has purely ontinuous

spetrum in fC � 1g

?

.

� T is strongly mixing if and only if

lim

n!1




';U

n

T

'

�

= 0 for all ' 2 fC � 1g

?

:

strong mixing =) weak mixing =) ergodiity
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2.2 Commutator methods for unitary operators

References:

� M. A. Astaburuaga, O. Bourget, V. H. Cortés, and C. Fernández,

Floquet operators without singular continuous spectrum. J. Funct.

Anal., 2006.

� C. Fernández, S. Richard and R. Tiedra, Commutator methods for

unitary operators, to appear in J. Spectr. Theory.

� C. R. Putnam, Commutation properties of Hilbert space operators

and related topics, Springer-Verlag, 1967.
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In [Astaburuaga/Bourget/Cort�es/Fern�andez06℄, the authors show

an analogue of Mourre's theorem for a unitary operator U in a

Hilbert spae H.

However . . .

� the regularity assumption is U 2 C

2

(A),

� the proofs rely one more on di�erential inequalities for

\resolvents" of U .

We want to obtain this result with the weaker assumption

U 2 C

1+0

(A) and with a simpler proof !
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At the end of the day, we obtain:

Theorem 2.3 (Spetral properties of U). Let U 2 C

1+0

(A).

Assume there exist an open set � � S

1

, a number a > 0 and

K 2 K (H) suh that

E

U

(�)U

�

[A;U ℄E

U

(�) � aE

U

(�) +K:

Then, U has at most �nitely many eigenvalues in �

(multipliities ounted), and U has no singular ontinuous

spetrum in �.
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Sketch of the proof (i)

Why the “commutator” U�[A;U ℄ is the right expression to consider ?

Imagine that U =

e

�iH

with H 2 C

1

(A), then one has

U

�

[A;U ℄

= i

�

s-

d

dt

e

iH

e

�itA

e

�iH

e

itA

�

t=0

= i

�

s-

d

dt

Z

1

0

d� s-

d

d�

e

i�H

e

�itA

e

�i�H

e

itA

�

t=0

= �

Z

1

0

d� s-

d

dt

�

e

i�H

H

e

�itA

e

�i�H

e

itA

�

e

i�H

e

�itA

H

e

�i�H

e

itA

�

t=0

= �

Z

1

0

d�

�

e

i�H

H

�

i

e

�i�H

; A

�

�

e

i�H

�

iH

e

�i�H

; A

��

=

Z

1

0

d�

e

i�H

�

iH;A

�

e

�i�H

:
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Thus,

U

�

[A;U ℄ =

Z

1

0

d�

e

i�H

�

iH;A

�

e

�i�H

;

and positivity of [iH;A℄ leads to positivity of U

�

[A;U ℄ and vie

versa.

(the idea of using U�[A;U ℄ dates back to Putnam in the 60’s)
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Sketch of the proof (ii)

As in the self-adjoint ase, one an show a Virial theorem whih

implies the following:

Corollary 2.4 (Point spetrum of U). Let U and A be

respetively a unitary and a self-adjoint operator in H, with

U 2 C

1

(A). Assume there exist a Borel set � � S

1

, a number

a > 0 and K 2 K (H) suh that

E

U

(�)U

�

[A;U ℄E

U

(�) � aE

U

(�) +K:

Then, U has at most �nitely many eigenvalues in �

(multipliities ounted).
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If U 2 C

1

(A) and

E

U

(�)U

�

[A;U ℄E

U

(�) � aE

U

(�) +K;

then the orollary implies that U has at most �nitely many

eigenvalues in � (multipliities ounted).

So, there exists � 2 � whih is not an eigenvalue of U , and the

range Ran(1� �

�U) of 1�

�

�U is dense in H.

Indeed, if  2 H is suh that  ? Ran(1� �

�U), then




 ; (1�

�

�U)'

�

= 0 for all ' 2 H =) (1� �U

�

) = 0

=) U = � 

=)  = 0:
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Furthermore, the Cayley transform of U at the point �; that is, the

operator

H

�

:= �i

�

1 +

�

�U

��

1�

�

�U

�

�1

; D(H

�

) := Ran(1� �

�U);

is self-adjoint.

Indeed, H

�

is self-adjoint if and only if

Ran(H
�

+ i) = Ran(H
�

� i) = H

() Ran

�

� 2i

�

�U(1�

�

�U)

�1

jRan(1��

�U)

�

= Ran

�

� 2i(1�

�

�U)

�1

jRan(1��

�U)

�

= H

() �2i

�

�UH = �2iH = H

() H = H = H:
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For any Borel set � � S

1

, the spetral measure E

H

�

of H

�

satis�es

E

H

�

(I) = E

U

(�) with I :=

�

�i

1 +

�

�z

1�

�

�z

j z 2 �

�

:

Cayley transform of R (for � = �i)
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Sketch of the proof (iii)
One has

(H

�

� i)

�1

=

��

� i(1 +

�

�U)� i(1�

�

�U)

�

(1�

�

�U)

�1

	

�1

=

�

� 2i

�

1�

�

�U

�

�1

	

�1

= �

1

2i

�

1�

�

�U

�

:

Thus,

�

A; (H

�

� i)

�1

�

=

�

A�

1

2i

�

1�

�

�U

�

�

=

�

�

2i

�

A;U

�

;

and the regularity ondition U 2 C

1+0

(A) implies the regularity

ondition (H

�

� i)

�1

2 C

1+0

(A).
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Sketch of the proof (iv)
A alulation in B

�

D(H

�

);D(H

�

)

�

�

shows that

[iH

�

; A℄ =

��

1 +

�

�U

��

1�

�

�U

�

�1

; A

�

=

�

1 +

�

�U

���

1�

�

�U

�

�1

; A

�

+

��

1 +

�

�U

�

; A

��

1�

�

�U

�

�1

.
.
.

= 2

�

(1�

�

�U)

�1

	

�

U

�

[A;U ℄ (1�

�

�U)

�1

So, the positivity of U

�

[A;U ℄ on a Borel set � � S

1

implies the

positivity of [iH

�

; A℄ on the orresponding set I � R .

Sine H

�

is of lass C

1+0

(A), the usual (self-adjoint) Mourre's

theorem implies that H

�

has no singular ontinuous spetrum in I.
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Now, suppose by absurd that U has some singular ontinuous

spetrum in � n f�g. Then, there exist ' 2 H n f0g and V � [0; 2�)

suh that

losure

�

e

iV

�

� � n f�g; jVj = 0 and

e

E

U

(V)' = ':

This implies that

e

E

U

(V)' = ' () E

U

(

e

iV

)' = ' () E

H

�

(J)' = ';

with

J :=

�

�i

1 +

�

�

e

iv

1�

�

�

e

iv

j v 2 V

�

� I:
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But, the funtion

V 3 v 7! �i

1 +

�

�

e

iv

1�

�

�

e

iv

2 J

has the Luzin N property. So jJ j = 0, and thus ' = 0 sine H

�

has

no singular ontinuous spetrum in J � I.

Sine ' 2 H n f0g, this is a ontradition. So, U has no singular

ontinuous spetrum in � n f�g, and thus no singular ontinuous

spetrum in �.

No need to re-do any proof with differential inequalities. We

just used the Cayley transform and the pre-existing

self-adjoint theory.
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We also have the following perturbation result:

Corollary 2.5 (Perturbations of U). Let U; V be unitary, with

U; V 2 C

1+0

(A). Assume there exist an open set � � S

1

, a

number a > 0 and K 2K (H) suh that

E

U

(�)U

�

[A;U ℄E

U

(�) � aE

U

(�) +K: (2.1)

Suppose also that (V � 1) 2K (H) is ompat. Then, V U has

at most �nitely many eigenvalues in eah losed subset of �

(multipliities ounted), and V U has no singular ontinuous

spetrum in �.

� the Mourre estimate (2.1) depends on U only (V is the

perturbation)

� UV and V U are unitarily equivalent sine UV = U(V U)U

�
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2.3 Perturbations of bilateral shifts

Let U be a bilateral shift on a Hilbert spae H with wandering

subspaeM� H, i.e.,

M? U

n

(M) for eah n 2 Z n f0g and H =

M
n2Z

U

n

(M):

Using the notation ' � f'

n

g 2 H, de�ne the (number) operator

A' := fn'

n

g; ' 2 D(A) :=

�

 2 H j

P

n2Z

n

2

k 

n

k

2

<1

	

;

whih is self-adjoint sine it is a maximal multipliation operator in

a `

2

-spae.
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One has for eah ' 2 D(A)




A';U'

�

�




';UA'

�

=




fn'

n

g; f'

n+1

g

�

�




f'

n

g; Ufn'

n

g

�

=




f'

n

g; f(n+ 1)'

n+1

g

�

�




f'

n

g; fn'

n+1

g

�

=




';U'

�

;

meaning that U 2 C

1

(A) � C

1+0

(A) with U

�

[A;U ℄ = U

�

U = 1.

Thus, Theorem 2.3 implies that U has purely absolutely ontinuous

spetrum, as it is well known.

In fat, the onditions U 2 C

1

(A) and [A;U ℄ = U imply that

s-

d

dt

e

�itA

U

e

itA

= �i

e

�itA

U

e

itA

()

e

�itA

U

e

itA

=

e

�it

U:

So, U is unitarily equivalent to

e

�it

U for eah t 2 R , and thus has

purely Lebesgue spetrum overing the whole irle S

1

.



2.3 Perturbations of bilateral shifts 98/115

Let V be another unitary operator with V 2 C

1+0

(A) and

(V � 1) 2 K (H).

We dedue from Corollary 2.5 that V U has purely absolutely

ontinuous spetrum exept, possibly, at a �nite number of points

of S

1

, where V U may have eigenvalues of �nite multipliity.
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2.4 Perturbations of the Schrödinger free

evolution

The Shr�odinger free evolution fU

t

g

t2R

in H := L2(R d) given by

U

t

:=

e

�itP

2

; t 2 R ;

satis�es

�(U

t

) = �

a

(U

t

) = S

1

for eah t 6= 0:

Indeed, one has for eah s 2 [0; 2�) and t 6= 0 that

E

e

�itP

2

(

e

is

) = E

os(�tP

2

)

�

os(s)

�

E

sin(�tP

2

)

�

sin(s)

�

= E

�tP

2

�

[0; s℄ + 2�Z

�

E

�tP

2

�

[0; s℄ + 2�Z

�

= E

P

2

�

[0;�s=t℄ +

2�

t

Z

�

:
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What can we say about perturbations of the type V U
t

?
The operator

A :=

1
2

�

(P

2

+ 1)

�1

P �Q+Q � P (P

2

+ 1)

�1

	

is essentially self-adjoint on C

1



(R

d

) (beause the vetor �eld

X

x

:= x(x

2

+ 1)

�1

2 R

d

is omplete), and alulations on C

1



(R

d

)

show that U

t

2 C

1

(A) with

(U

t

)

�

[A;U

t

℄

=

1
2

e

itP

2

X

j

n

(P

2

+ 1)

�1

P

j

�

Q

j

;

e

�itP

2

�

+

�

Q

j

;

e

�itP

2

�

P

j

(P

2

+ 1)

�1

o

= t

e

itP

2

X

j

n

(P

2

+ 1)

�1

P

2

j

e

�itP

2

+

e

�itP

2

P

2

j

(P

2

+ 1)

�1

o

= 2tP

2

(P

2

+ 1)

�1

:
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Further ommutations on C

1



(R

d

) show that U

t

2 C

2

(A).

Moreover, if t > 0 and losure(�) \ f1g = ?, there exists Æ > 0

suh that

E

U

t

(�)(U

t

)

�

[A;U

t

℄E

U

t

(�) � 2tÆ(Æ + 1)

�1

E

U

t

(�):

So, all the assumptions for U

t

are satis�ed, and we have:

Lemma 2.6. If V 2 C

1+0

(A) and (V � 1) 2K (H), then the

eigenvalues of V U

t

outside f1g are of �nite multipliity and

an aumulate only at f1g. Furthermore, V U has no singular

ontinuous spetrum.

This extends previous results on the Schrödinger free evolution

perturbed by “periodic kicks” (V =

e

iB with B = B

� of finite rank).
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2.5 Skew products over translations
Let fy

t

g

t2R

be a C

1

one-parameter subgroup of a ompat metri

abelian Banah Lie group X with normalised Haar measure � (suh

group X is isomorphi to a subgroup of T

�

0

� (R =Z)

�

0

).

Let fF

t

g

t2R

be the orresponding translation ow,

F

t

(x) := y

t

x; t 2 R ; x 2 X;

and let fV

t

g

t2R

the orresponding strongly ontinuous unitary

group in H := L2(X;�),

V

t

' := ' Æ F

t

; t 2 R ; ' 2 C(X):
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The generator H of fV

t

g

t2R

given by

H' := �iL

Y

'; ' 2 C

1

(X);

with Y the vetor �eld assoiated with fF

t

g

t2R

and L

Y

the

orresponding Lie derivative, is essentially self-adjoint on C

1

(X).
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Let G be a ompat metri abelian group with Haar measure � and

harater group

b

G, and let � : X ! G be a measurable funtion

(oyle).

We want to apply ommutator methods to the Koopman operator

W :=  Æ T ;  2 L2(X �G;�� �);

with T the (measure-preserving invertible) skew produt

T : X �G! X �G; (x; z) 7!

�

y

1

x; �(x)z

�

:
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The operator W is redued by the orthogonal deomposition (given

by the Peter-Weyl theorem)

L2(X �G;�� �) =
M

�2

b

G

L

�

; L

�

:=

�

'
 � j ' 2 H

	

;

and W j

L

�

is unitarily equivalent to the unitary operator

U

�

' := (� Æ �)V

1

'; ' 2 H:

Furthermore, the operator U

�

satis�es the following purity law:

If F

1

is ergodi, the spetrum of U

�

has uniform multipliity

and is either purely puntual, purely singular ontinuous or

purely Lebesgue (see [Helson86℄ in the ase X = G = T).
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We assume the following:

Assumption 2.7. The translation F

1

is ergodi and � : X ! G

satis�es � = � �, where

(i) � : X ! G is a ontinuous group homomorphism,

(ii) � 2 C(X;G) has a Lie derivative L

Y

(� Æ �) whih satis�es

Z

1

0

dt

t


L

Y

(� Æ �) Æ F

t

�L

Y

(� Æ �)




L1(X)

<1:

Two omments:

� � Æ � enodes the \topologial degree" of the oyle � Æ �.

� (ii) means that L

Y

(� Æ �) is of Dini-type along the translation

ow fF

t

g

t2R

.
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De�ne

�

0

:=

d

dt

(�Æ�)(y

t

)

�
�
�

t=0

; g := j�

0

j

2

��

0

L

Y

(� Æ �)

� Æ �

and A := �i�

0

H;

and observe that g : X ! R is of Dini-type along fF

t

g

t2R

and that

A is self-adjoint with D(A) � D(H).

Sine A and V

1

ommute, we have for eah ' 2 C

1

(X) that




A';U

�

'

�

�




';U

�

A'

�

=




';

�

A;� Æ �

�

V

1

'

�

=




';��

0

L

Y

(� Æ �)V

1

'

�

;

with

L

Y

(� Æ �) = L

Y

(� Æ �)(� Æ �) + (� Æ �)L

Y

(� Æ �)

=

�

�

0

+

L

Y

(� Æ �)

� Æ �

�

(� Æ �):
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It follows that




A';U

�

'

�

�




';U

�

A'

�

=




'; gU

�

'

�

;

with g 2 L1(X). So, one has U

�

2 C

1

(A) with

�

A;U

�

�

= gU

�

due

to the density of C

1

(X) in D(A).

Sine g is of Dini-type along fF

t

g

t2R

, the equalities

Z

1

0

dt

t




e

�itA

�

A;U

�

�

e

itA

�

�

A;U

�

�




B(H)

=

Z

1

0

dt

t




e

�itA

gU

�

e

itA

�gU

�




B(H)

=

Z

1

0

dt

t




�

e

�itA

g

e

itA

�g

�

e

�itA

U

�

e

itA

+g

�

e

�itA

U

�

e

itA

�U

�

�




B(H)

imply that U

�

2 C

1+0

(A).
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If the funtion g were stritly positive, we would be able to apply

Theorem 2.3 sine

(U

�

)

�

�

A;U

�

�

= (U

�

)

�

gU

�

� inf

x2X

g(x) > 0:

But, this is a priori not the ase sine

g = j�

0

j

2

� �

0

L

Y

(� Æ �)

� Æ �

� positive onstant + total derivative:

Nonetheless, the same averaging of the onjugate operator A as the

one used for horoyle ows may work and lead to a stritly

positive funtion g.
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Sine U

�

2 C

1

(A), we have U

`

�

2 C

1

(A) and U

`

�

D(A) = D(A) for

eah ` 2 Z, and thus the operator

A

n

' :=

1

n

n�1

X

`=0

U

�`

�

AU

`

�

' =

1

n

n�1

X

`=0

U

�`

�

�

A;U

`

�

�

'+A'; ' 2 D(A

n

) := D(A);

is self-adjoint sine

1

n

P

n�1

`=0

U

�`

�

�

A;U

`

�

�

is bounded.

Doing the same alulations as before with A

n

instead of A, one

obtains that U

�

2 C

1+0

(A

n

) with

�

A

n

; U

�

�

=

1

n

n�1

X

`=0

U

�`

�

�

A;U

�

�

U

`

�

=

1

n

n�1

X

`=0

U

�`

�

�

gU

�

�

U

`

�

= g

n

U

�

and

g

n

:=

 

1

n

n�1

X

`=0

U

�`

�

gU

`

�

!

=

1

n

n�1

X

`=0

g Æ F

�`

:
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Sine F

1

is ergodi, we know (see [Cornfeld/Fomin/Sina��82℄) that

the ow fF

`

g

`2Z

is uniquely ergodi and that

�

0

=

d

dt

(� Æ �)(y

t

)

�
�
�

t=0

6= 0 if � Æ � 6� 1:

Using the notation � Æ � =

e

if

�;�

, we infer that

lim

n!1

g

n

=

Z

X

d� g = j�

0

j

2

� �

0

Z

X

d�

L

Y

(� Æ �)

� Æ �

= j�

0

j

2

+ �

0




1; Hf

�;�

�

= j�

0

j

2

uniformly on X.
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Thus, g

n

> 0 if n is large enough, and

(U

�

)

�

�

A

n

; U

�

�

= (U

�

)

�

g

n

U

�

� inf

x2X

g

n

(x) > 0

as desired.

Putting everything together, we obtain the following:

Theorem 2.8 (Spetral properties of W ). Let F

1

be ergodi and

let � satisfy Assumption 2.7 with � Æ � 6� 1. Then, U

�

has

purely Lebesgue spetrum. In partiular, the restrition of W

to the subspae

L

�2

b

G;�Æ� 6�1

L

�

� L2(X �G;�� �) has ountable

Lebesgue spetrum.
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Two remarks:

� In the ase X = T

d

, G = T

d

0

with d; d

0

� 1, this omplements

previous results of [Iwanik/Lema�nzyk/Rudolph93-99℄, where

L

Y

(� Æ �) is of bounded variation instead of Dini-type.

(bounded variation and Dini-continuity are mutually independent)

� If we do not assume that L
Y

(� Æ �) is of Dini-type, we an

already infer that W has purely ontinuous spetrum in

L

�2

b

G;�Æ� 6�1

L

�

due to the orollary on the point spetrum

(Corollary 2.4) and the purity law.


