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1 Commutator methods for self-adjoint

operators

Commutator methods are a tool for the spectral theory and the

scattering theory of self-adjoint operators in Hilbert spaces.

They have been introduced by Eric Mourre in the 80’s for the
study of Schrodinger operators in L2(R?) (and further developed by
Amrein, Boutet de Monvel, Georgescu, Gérard, Jensen, Perry,

Sahbani, . . .)



1.1 Classical mechanics as a motivation 3-b/115

1.1 Classical mechanics as a motivation

e M, symplectic/Poisson manifold with Poisson bracket {-, -}
e H € C*®(M), Hamiltonian with complete flow {¢;}icr

e Hamiltonian evolution equation for an observable f € C*°(M):

d
Efogot:{fr[_[}ogoti teR.
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For instance, if H(q,p) := |p|?> + V(q) on M := T*R? with
V € C>(R%), let’s say that we don’t want orbits bounded in |g|?.

We want something like:

|€l|2 O Pt




1.1 Classical mechanics as a motivation 5-c/115

Since, S—;\q\z oy = {{|q|*, H}, H} o ¢4, it is sufficient to check that

{{‘Q‘27H}7H} >0 > 0.

In the example H(q,p) = |p|* + V(q), we get

{{la*, B}y, H} = {{la)*, Ip)* + V(@) }, H}
= {4(q - p), |p|* + V(g)}
= 8|p* —4q- (VV)(q).

Thus, [p[? > %supqeRn ]q : (VV)(q)] implies lim |g|* o ¢ = +00.

|t|— o0

(If the kinetic energy |p|? is large enough, all the trajectories go to

infinity .. .)
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To some extent, the idea behind commutators methods for
self-adjoint operators is to translate the last example into the
language of the (quantum) Hilbertian theory with the following

heuristic dictionnary in mind:

Poisson manifold M Hilbert space ‘H
Poisson bracket {-, -}
Hamiltonian H € C*° (M)
%fOSOt = {f,H} © Pt
bounded orbits of H

commutator 2|, -]
self-adjoint operator H in ‘H

% e—th Feth — eth[iF, H] e—th

11111

eigenvalues of H
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1.2 Self-adjoint operators

References:

e W. O. Amrein, Hilbert Space Methods In Quantum Mechanics,
EPFL Press, 2009

e M. Reed and B. Simon, Methods of modern mathematical physics.

volumes |-1V, Academic Press, 1980

e J. Weidmann, Linear Operators in Hilbert Spaces, Springer Verlag,
1980
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An operator H with dense domain D(H) in a Hilbert space H is

symmetric if
<Hgo,¢> — <90,H7,b> for all ¢,y € D(H).
A vector n € H belongs to D(H*) if there exists n* € H such that

(n*, ) = (n, Ap) for all p € D(H).

In this case, one sets H*n := n* and one calls H* the adjoint of H.

A symmetric operator H is self-adjoint if
{H,D(H)} = {H",D(H")},

which is verified if and only if the ranges Ran(H + 1) = H.
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If H is self-adjoint, then the set D(H) equipped with the inner
product

(0% )pimy = (0. %) + (Ho, HY),  ¢,¢ € D(H),

and the induced norm

||(pH2D(H) = <90) ('0>D(H)’ 78S D(H)7

defines a Hilbert space (a complete inner space).

A subspace ¥ C D(H) is a core for H if the closure of ¥ in D(H)
is equal to D(H); that is,

@” : ||D(H) _ D(H)
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Example 1.1. The multiplication operator Q in H := L*(R)
gwen by

Qo)(@) = a0(@), v Ha® = {ocH| [ (1+[el)lo@) <ool,
1s self-adjoint.
Example 1.2. The operator P in H := L*(R) given by
(Pp)(z) = —i¢'(z), ¢ €H(R):=FHi(R),
with % the 1-dimenstonal Fourier transform, is self-adjoint.

(the operator P is just the Fourier transform of the operator @; that
is, Q = ZPF 1)

The space . (R) of Schwartz functions on R is a core for @ and P,
since .(R) is dense in the (Sobolev) spaces H;(R) and H!(R).
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Let #(H) be the set of bounded operators on H and let H be a
self-adjoint operator H in H.

The set
p(H):={z € C|(H —z)" " exists and belongs to Z(H)}

is the resolvent set of H; it is an open subset of C.

The set o(H) := C\ p(H) is the spectrum of H; it is a closed
subset of R.
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A spectral family on a Hilbert space H is a function £ : R — A(H)
such that

e F()) is an orthogonal projection for each A € R, z.e.,
E(A\) = E(A)* = E(\)? for each )\ € R,
o F(pu) < E) forall u <), e,
(p, E(n)p) < {(p, E(\)p) forall p € H, p <A (monotonicity),

o s-lim.\ 0 E(A+¢€) = E()) for each A € R (right continuity),

e s-limy . o E(A) =0 and s-limy ,o, E(A) = 1.

For intervals, one defines the spectral measure
E((a,b]) := E(b)—E(a), E((a,b)) :=s-limoE(b—€)—E(a), etc.

and one extends these definitions to E(V) for any Borel set V C R.
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Theorem 1.3 (Spectral theorem). A self-adjoint operator H in a

Hilbert space H admits exactly one spectral family EX such that

H = / A EH(dN),
R
with the strong integral [, MNdAE®(dN) satisfying

<<p,/R>\EH(d)\)¢> ::/RA@,EH(dA)m, o e M, ¥eDH).

Furthermore, one has for —oo < a < b < oo that

1 b+6
E" ((a,b]) = —s lims~ o s- lime\o/ 5 dX Im(H — X —ig) ™",
a+

(Stone's Formula)
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T'wo comments:

e The support of the spectral family E¥ is the set of points of

non-constancy and coincides with the spectrum of H

supp(E") = {X e R | E¥ (A +¢e)—E" (A\—¢) #0 Ve > 0} = o(H).
e Formally, one has
|Hy|? = (H, Hy) = / A / w (BH (dp), B (dN) )
R R
:/A/uw,EH(dmdA)w
R R
- /R N2 (3, BH (dN) ),

so that ¢ € D(H) if and only if [, A2 (v, EH¥(dA)9) < co.
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Example 1.4. The spectral projection E?()) of the operator @
in H := L?(R) is the operator of multiplication by the
characteristic function X(—oo,z, 1.€.,

E?(N) ¢ :=X(—oon ¥, @EH.

One verifies that

o(Q) = supp(EQ) = R.
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Example 1.5. The multiplication operator Q? := Z;lzl Q3 in
H = L2(R?) given by

d
(@) (z) :=2%p(z), @€ H(RY), 2®:=) a2,

j=1
1s self-adjoint, and its spectral family 1s given by

X[-arz a2 @ f A>0
0 if A<0,

EQ (N g = oM.

One verifies that

U(Qz) = supp(EQz) = |0, 00).
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The Laplacian —A in H := L2(R%) satisfies on .7 (R?) (and thus on
H?(R?))

d
— A\ = ZPJZ =P’ =7"1Q%7,
j=1
with .# the d-dimensional Fourier transform. So, one has

-0 _ g7ty (Stone) 41po? 4
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Let Ag be the Borel o-algebra of R and |V| be the Lebesgue

measure of V € Ag.

If H 1s a self-adjoint operator in H, one has the orthogonal

decompositions

H =Hp(H) & Hse(H) ® Hac(H)

H = Hlp, 1) ® Hlppo(m) @ Hlpoo (1),
with
Hp(H) := Span{eigenvectors of H }
Hee(H) :={p € H | A~ [|[E”(X)p||* is continuous

and 3V € Ag with |[V| =0 and E”(V)p = ¢}

Hac(H) := {0 € H | A ||E¥(A)p]|? is absolutely continuous}.
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The subspaces Hp(H), Hsc(H), Hac(H) are the pure point
subspace of H, the singular continuous subspace of H and the

absolutely continuous subspace of H.

The decomposition of H induces a decomposition of o(H)

0(H) =0p(H)Uos(H)Uoa(H),

with
op(H) := O'(H %p(H)) the pure point spectrum of H,
osc(H) = O'(H Hoo H)) the singular continuous spectrum of H,
Tac(H) 1= O'(H Moo H)) the absolutely continuous spectrum of H.

The sets op,(H), 0sc(H), 0ac(H) are closed and (in general) not

mutually disjoint.
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Example 1.6. For each A € R and ¢ € H := L?(R), one has

|22l = x-con Il

-/ " 2 lp(@)?

— 00

— integral of a L!-function

— absolutely continuous function.

So, H = Ha(Q) and Q has purely absolutely continuous
spectrum o(Q) = 0ac(Q) = R.

In fact, Q has Lebesgue spectrum since
e’itP e’iSQ e—’itP — e’ist e’iSQ, S, t E R : : e’itP Q e—’itP — Q“"t, t E R

(...Stone-von Neumann theorem. . .)
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Example 1.7. Let f :[0,1] — [0, 1] be the Cantor function, and
let

My :=fo, ¢eH:=L%0,1]),

be the corresponding bounded multiplication operator.
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The spectral family of My 1s

Xf-1(oa) ¥ o A€(0,1]

EMi(\) o =
e 0 if AeR\|0,1],

© € H.

One verifies that
o(My) = supp(EQz) = Cantor ternary set

and that the function
1
2 2
0,1] 2 A= [[EM (N o|” = |Ixs-2q0,2) ¢ :/O dz x 51 (jo,x)) (2)]0(z)]?
15 continuous but not absolutely continuous.

So, H = Hsc(Mys) and My has purely singular continuous
spectrum o(My) = osc(My) = Cantor ternary set.
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An interesting link between spectral theory and dynamics is

provided by the following:

Theorem 1.8 (RAGE theorem). Let H be a self-adjoint
operator in a Hilbert space H and let C € HB(H) be such that
C(H + 1)~ ! is compact. Then,

I .
lim —/ dt ||C e ¥ (pH2 =0 for all p € Hee(H) ® Hac(H).
T—o0 2T _T

RAGE theorem says that, as time evolves, the state ¢ in the
continuous subspace of H escapes (in Cesaro mean) from the range

of the operator C.

(the typical example is when H is a Schrodinger operator in R® and C

the orthogonal projection onto a compact subset of R?)
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1.3 Commutator methods for self-adjoint

operators

References:

e W. O. Amrein, A. Boutet de Monvel and V. Georgescu,

Co-groups, commutator methods and spectral theory of N-body

Hamiltonians, Birhauser, 1996

o E. Mourre, Absence of singular continuous spectrum for certain
selfadjoint operators, Comm. Math. Phys., 1980/81.

e J. Sahbani, The conjugate operator method for locally regular

Hamiltonians, J. Operator Theory, 1997.
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e 7, Hilbert space with norm || - || and scalar product (-, -)
o #(H), set of bounded linear operators on H
o 7 (H), set of compact operators on H

o A, H, self-adjoint operators in ‘H with domains D(A), D(H),
spectral families F4(-), Ef(-) and spectra c(A), c(H)

e The adjoint space of a Banach space B is defined by

B* .= {anti—linear continuous functions ¢ : B — (C}

@z == sup {|¢(p)| | ¢ € B, |lpllz <1}
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Definition 1.9. An operator S € %(H) satisfies S € C*(A) if
the map

R3t— e ®45e ¢ B(H)

is strongly of class C*.

In other terms, S € C*(A) if there exist

Bo(t) = e 4 Se' Bi(t), Ba(t),...,Bi(t) € B(H), teR,

such that
Bi(t+h)— B;(t
%ix% it + })L J()QO—BjJrl(t)cpH =0 forallt e R, ¢ € H,
ﬁ

for j=0,1,...,k—1.
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S € C'(A) if and only if the quadratic form
D(A)S o <A90,Sgo> — <90,SA90> ceC
is continuous for the topology induced by H on D(A); that is, if

[(Ap,Sp) — (p,5Ap)| < Const.||p||*> for all p € D(A).

The bounded operator corresponding to the continuous extension

of the quadratic form is denoted by [A, S|, and one has

Ry _ o @ —itA o itA
[2A,S] =s 5 © Se . c B(H).
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Example 1.10. Let f € L*®(R) be an absolutely continuous
function with f' € L*(R), and let

Mip:=fo, ¢cH:=L*R),

be the corresponding bounded multiplication operator.

Then, one has for each ¢ € H

d _ip itP d
Ee M;ye QOZEMf(-—t)QOZ_Mf'('—t)(p’

and thus My € C*(P) with [iP, Ms] = My
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In the case of (unbounded) self-adjoint operators, we have a similar

definition:

Definition 1.11. A self-adjoint operator H is of class C*(A) if
(H—2)"t € C*¥(A) for some z € p(H).

If H is of class C'(A4), then

[A, (H — z)_l] = (H —2)'[H —z,A|(H —2)7!
(H —2)7[H, Al(H - 2)~%,

with [H, A| the bounded operator from D(H) to D(H)* associated

with the continuous extension to D(H) of the quadratic form

D(H)ND(A) > ¢ — (Hp, Ap) — (Ap,Hyp) € C.
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Theorem 1.12 (Virial Theorem). Let A, H be self-adjoint
operators with H of class C*(A). Then,

EP({D})[A, HIEZ({)\}) =0 for each A € R.

Thus, one has <90, A, H]<p> = 0 if ¢ 1s an eigenvector of H.
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Proof. We must show that if ¢1, o € D(H) satisfy Hyp; = Ap; for
some A € R, then (1, [4, H|ps) = 0.

But,

<9017 [A7 H]902>
= (A=) (H —9) o1, [A4, HI(A+9)(H + i) p2)
= —(A+1)%(p1, [A, (H+ 1) o)

= — (A +1)? lim (p1, [=(e™4 =1), (H + 1)t p2)

. . 1 T N\ — ) ur
=~ 92 lim - { (o, €A i) ) — (B — 1) e )

1
_ . 2 .
=—(A+1) 71_1II%) o {0}.
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Corollary 1.13 (Point spectrum of H). Let A, H be self-adjoint
operators with H of class C*(A). Assume there exist a Borel
set I CR, a number a >0 and K € #(H) such that

EF([iH,A|E¥(I) > a B (1) + K. (1.1)

Then, H has at most finitely many eigenvalues in [

(multiplicities counted).

Some comments:

e If I is bounded, one has

EZ(I) [iH, A] E7(I) € B(H).
N—— N— N——
cB(D(H)*H) cB(D(H),D(H)*) €%B(H,D(H))

e If ] is not bounded, the inequality (1.1) holds in the sense of
quadratic forms on D(H).

e The inequality (1.1) is called a Mourre estimate.
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Proof. If ¢ € H is an eigenvector of H with ||¢|| = 1 and with

eigenvalue in I, the Mourre inequality (1.1) implies that

0> a(p, E'(I)p)+ {p,Kp) = (p,Kp) < —a.

Now, if the claim were false, there would exist an infinite
orthonormal sequence {¢,} of eigenvectors of H in E¥(I)H. In
particular, one would have w-lim;_,. ¢; = 0. Since K € . (H),
this would imply that lim;_,o (¢;, K¢,) = 0, which contradicts
the inequality <goj, chj> < —a < 0. []

Note that the proof shows that if K = 0, then H is purely

continuous in I No(H).
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Example 1.14 (Finite dimension). If dim(#) < oo, then A, H

are hermitian matrices and H € C*(A).

Furthermore, one has
tH,Al =1+ ([’LH, Al — 1) = 1 + compact operator,

and the corollary implies (without surprise) that H has at most

finitely many ergenvalues in o(H).
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Definition 1.15. S € C'*%(A) if S € C*(A) and
Pdt s itA
: — [|e7*4[A, 5] e —[A, 8| 45y < 00

Similarly, a self-adjoint operator H is of class C*T°(A) if
(H—2)"t € C**O(A) for some z € p(H).

If we regard C*(A), C*T°(A) and C?%(A) as subspaces of B(H), we

have the inclusions

C?(A) Cc C*°(A) C CH(A) C B(H).
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Example 1.16. Let f € L*(R) be an absolutely continuous
function with f' € L*°(R) Dini-continuous, and let My be the

corresponding multiplication operator in H := L?(R).

Then, we know that My € C'(P) with [iP, Ms] = M/, and

%B(H)

bdt, ,
:/o THf('_t)_fHLoo(R)

< 0

bdat, . tdt
| e PP M P My = [ G Mp—o-
0 0

due to the Dini-continuity of f'. So, one has My € C*TO(P).
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Spectral result of Mourre

(and Amrein, Boutet de Monvel, Georgescu,
Sahbani,...)

Theorem 1.17 (Spectral properties of H). Let H be of class
C'*O(A). Assume there exist an open set I C R, a number
a>0 and K € #(H) such that

EF([iH,A|E¥(I) > a B (I) + K.

Then, H has at most finitely many eigenvalues in [
(multiplicities counted), and H has no singular continuous

spectrum in I.
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Some comments:

e the operator A is called a conjugate operator for H on [
e if K =0, then H is purely absolutely continuous in I No(H)

e if H has a spectral gap or satisfies an additional invariance
assumption, then one can replace the condition C'*°(A) by a

weaker condition C11(A)
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Sketch of the proof of Mourre (i)

One has for u € 0(H) and € € R that
H(H — U — z’s)_lH = H:z: — (x— @ — ’i5)_1H|_oo(R) = lg|7t.
Thus, (H — u — 1€)~! cannot have a limit in %(H) as ¢ — 0.
However, for some ¢ € H \ {0}, the holomorphic function
F:p(H)—=C, z— (p,(H—2)""9p),
may have a limit

F(p) = g@)F(u+ie)

uniformly on each interval [a,b] C I.
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In such a case, Stone’s Formula and Lebesgue’s dominated

convergence theorem imply for A € (a,b] that

1

1B (@@ )ell* = (0. B (@, )p) = 7 | du ImP()

But, F' is continuous on |a, b] due to the uniform convergence of the
sequence F,(-) := (p, (H —(-) — ie)_1<p>. Thus,

Im F(u) € L}([a,b]) and EF(I)p € Hac(H).

Therefore, if there is a dense set of vectors ¢ € H satisfying what
precedes, then E*(I)H C Hac(H) and H is purely absolutely

continuous in I No(H).
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Sketch of the proof of Mourre (ii)

Let’s show the existence of the limit lim.\ o F'( + 2€) in the

homogeneous case [1H, A] = H.

(in such case, one has e~%4 He®4 = et H, and thus we already know

that H has homogeneous spectrum on R \ {0})

One has for z € p(H)
2 % (H=2)"=z(H-2)" =(H-2) " HH-2)" - (H-2)"
= [iA,(H —2)7] = (H—2)7"

which gives for ¢ € D(A)

ddz F(z) = —F(z) — (iAp,(H —2)") — (H — 2) " 'p,iAp).
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But, if 2 = u + 2 with € > 0, then

|(# —p—ie) o] = |(H —p+ie) o
= (o, |H — p — 1| o)
= [(p, e Im(H —p—18) ")
= e ' ImF(u + te)|.
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Thus, we get for 2 = u + 1 with u # 0 fixed and € > 0 that

d
— F
dz (2)

= | = F(2) — (i4p,(H — 2)™) — (H — 2) ', 1Ap)]

= |u + 16| |

‘F,Lb+ze)‘—i—2||Acp||HH U — 1€) cpH

d | 1
— | ge Flerie)| < (el + 20140l [(H -k —e) |
d 1

\ul

(ol + 2| Ay e /2| F(u + ie)| /2.
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Now,
|F(p+i€)| > | ImF(u+ ie)| = SH(H—,LL—ia)_lgon >0

if € >0 and ¢ #0.

S0, one can divide the last inequality by ]F(u + z’e)]l/ ? %o get

F(u + 1€) _

e 1/2’ < = (llell +2[|Apl) e~/

|F(p + d€)| 1]

= | L Pt < L (ol + 2] Ap]) —
de ~ |u 2e1/2

f de
== |F(p+1)2 — F(u+1ie)/? < — (||<PH+2HA<PH)(1—51/2)

[ul

F(u+ie)|"? < |F(u+1)]"% + m(uwu +2||Ag])).

e€(0,1)
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Putting the last estimate in the inequality

d
de

< 2 (lloll + 21| Ap]) e/ F(u + i€)| /2,

m

one gets for each || > >0 and € € (0,1)

— F(p + €)

d
— F
3 £ (b + )
1 _ ~N1/2 1
< m(uwnwnmn)e 1/2{\F(u+z>!/ + (el + 21401) |
1
< 5l + 21l401) e { ol + 5 (Il + 2114 }

< (6, 0)e 2 (|lpll? + || Ael?).
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It follows that {F(u +1i/m)} is a Cauchy sequence since

meEN*
. . t/m g .
F(u+i/m) — F(u+i/n)| = // de - F(u + i)
1/n

1/m
< c(6,0) (ol + | Av]?) / e

=20(6,¢) (lol” + | Apl®) [m ™12 — n=1/2]

— 0 asm,n — 0.

Thus, the limit lim.\ o F'(u + 2€) exists uniformly on |u| > 4.
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1.4 Schrodinger operators

Let My be the self-adjoint multiplication operator in H := L?(R)
given by V € L*°(R; R). Then, the 1-dimensional Schrodinger

operator
Hp:=—-ANp+ Myp, ¢cDH):=H*(R),

1s self-adjoint due to the Kato-Rellich theorem.

(self-adjointness is preserved under the perturbation by a bounded

self-adjoint operator)

In quantum mechanics, the operator H describes a non-relativistic

particle in R in presence of a scalar (electric) potential V.
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Can we (under some assumptions on V') determine the
spectral nature of H 7

Can we do it using commutator methods ?



1.4 Schrodinger operators

The family of operators {U; }:cr in H given by

(Usp)(z) =2 p(e?z), ¢ € S(R), z,t €R,

defines a strongly continuous unitary group (the dilation group).

The self-adjoint generator A := z’(s—% Ut’t:o) of {U;}icr acts as

Ap = %(QP + PQ)QO, € .7 (R).

49-a/115
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The operator A i1s the quantum analogue of the classical observable

g-pon M :=T*R which appeared at the beginning:

{{*,7° +V(@)},p* + V(9)} = {4(q-p),p* + V(9)}
=8p° —4q- (VV)(9).
... Just replace the observables ¢ and p on M := T”*R by the

self-adjoint operators ) and P in H, and be cautious with the

domains and the self-adjointness of the unbounded operators. ..
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One has

= (=A + )7 12(=A)(=A + )7

and —A 1is of class C®°(A) with [tA, —A] = -2(—A).
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Similarly, one has

e 4 My e = My (et ..

Thus, if V' is absolutely continuous with idg -V’ € L*°(RR), one has

S-—; € = Midg - v/,

dt v t=0
and My € C (A) with [’LA, Mv] = MidR-V’-

Furthermore, if V' is Dini-continuous, one has My € C*T%(A) since

/ — ||e "4 [A, My e —[A, My
0

1 dt . / t : /
[ 0 ) i Vg
0

< 0.



1.4 Schrodinger operators 53-a/115

We infer that H is of class C119(A4), with

[ZH, A] — 2(-&) - ]\4-1(5_]R Vi — 2H — M(2V—id]R V-

Now, assume that

lim (2V —idg -V')(z) = 0.

|z|— 00

Then, a standard result tells us that

Mov—igs vy (A + i)t e H(H).

(the products f(Q)g(P) with f,g € C(R) vanishing at infinity are

compact operators)
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Given an open bounded set I C R, 1t follows that
ER(I)[+H, A|EF(I)
=2B%(I)HE"(I) — E"(I)M(2v _ia, v E" (I)
> 2inf(1)EY(I) — E¥(I)M(av—iay v (= A + 1) H(=A + ) E¥(I)

= 2inf(I)E*(I) 4 compact operator.

Thus, Theorem 1.17 implies that H has at most finitely many
eigenvalues in each open bounded set I C (0, co) (multiplicities

counted), and that H has no singular continuous spectrum in
(0, 00).

(in fact, since My (—/A\ +1)~! is compact, one has oess(H) = [0, 00),
so that os.(H) = @ and 0,.(H) = |0, 00))
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Countless variations/generalisations of this example can be found

in the literature:

e the potential V' may have singularities (for instance of

Coulomb-type)
e the potential V' may have anisotropies at infinity
e the Schrodinger operator A may contain a magnetic field

e the Schrodinger operator H can be replaced by an N-body

Schrodinger operator

e the Schrodinger operator H can be replaced by a quantum field

Hamiltonian

e the Schrodinger operator H can be replaced by a Dirac

operator
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e the operator —/A\ can be replaced by the Laplace-Beltrami

operator (on functions or differential forms) on various types of

non-compact manifolds

e the operator —A\ can be replaced by the combinatorial

Laplacian (adjacency matrix) on various types of infinite graphs

e ctc...
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1.5 Time changes of horocycles flows

References:

e G. Forni and C. Ulcigrai, Time-changes of horocycle flows,
J. Mod. Dyn., 2012

e R. Tiedra, Spectral analysis of time changes of horocycle flows,
J. Mod. Dyn., 2012.

e R. Tiedra, Commutator methods for the spectral analysis of

uniquely ergodic dynamical systems, preprint on arXiv
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Horocycle flow

e X, compact Riemann surface of genus > 2
o M :=T'%, unit tangent bundle of &

® (o, probability measure on M induced by a volume form (2

The horocycle flow {F} :}:cr and the geodesic flow {F: ;}icr are

one-parameter groups of diffeomorphisms on M.

Both flows correspond to right translations on M when
M ~ T\ PSL(2;R), for some cocompact lattice I' in PSL(2; R).
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Geodesic in the Poincaré half plane
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Horocycle flow in the Poincaré half plane
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The operators
Uj(t)p :=poF;:, teR, p e C(M),

define strongly continuous unitary groups in H := L*(M, uq) with

essentially self-adjoint generators
Hijp = —1.2%,0, ©cC®M),

where X; 1s the divergence-free vector field associated with

{Fjt;ter and Ly, the corresponding Lie derivative.

The horocycle flow {F} ¢ }+er 1s uniquely ergodic [Furstenberg 73|,
mixing of all orders [Marcus 78], and U;(t) has countable Lebesgue

spectrum for each ¢ # 0 [Parasyuk53].
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The horocycle flow and the geodesic flow satisfy the commutation

relation (see for instance [Bachir/Mayer00])
Uz(S)Ul(t)Uz(—S) = Ul(est), S,tER, (12)

which is a consequence of the matrix identity in SL(2,R) :

es/2 0 1t e=s/2 1 eSt
0 e 5/ 0 1 0 es/2 0 1

and & to

Therefore, by applying the strong derivatives ds ls—o

a|
t1t=0
(1.2), one obtains that H; is of class C*°(H;) with

[iH1,Hs| = Hi.
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Time changes of horocycle flows

Consider a C! vector field with the same orientation and
proportional to Xi; that is, fX; with f € C*(M; (0, 00)).

The reparametrised time coordinate h(p,t) given by

h’(p7t) dS
- /  tER pe MM,
0 f(Fl,s(p))

is such that h(p,0) =0, lim; .4 A(p,t) = +00 and
%h(p)t) — f(Fl,h(p,t)(p))°

The function R 3> ¢ — ﬁl,t(p) € M given by ﬁl,t(p) = F1 hp,t)(D)

satisfies
d

&Fl(p;t) = (fxl)ﬁl(p,t)’ Fl(p, O) = P,

and thus {ﬁl,t}tER is the flow of fX;.
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The operators
U (t)p:=poF;, teR, pcC(M),

define a strongly continuous unitary group in H := L2(M, ua/f).

The generator H := —i.%x, of {U1(t)}+cr is essentially self-adjoint
on C!(M) and unitarily equivalent to the operator in H given by

H = fl/zHlfl/z-

(...the unitary operator % : H — H, @ — f1/2¢ realises the unitary

equivalence. . .)
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What is the spectral nature of H
(or equivalently of H)?

e Spectral properties are in general not preserved under time
changes even though basic ergodic properties are preserved

under time changes.

e In 1974, Kushnirenko shows that the flow {ﬁl,t}te]& is strongly
mixing if f is of class C* and f — Zx.,(f) > 0. So, H has

purely continuous spectrum in R \ {0} in this case.

e In 2006, Katok and Thouvenot conjecture that H has absolute
continuous spectrum (and even countable Lebesgue spectrum)

if f 1s sufficiently smooth.
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Mourre estimate

Let z € C\ R and assume for a moment that f = 1, so that

H = H;. Then, one has (H + z)~! € C'(H,) with
W(H+2) ' Hy| = —(H+2) '[1H, Hy)(H + 2)~*

= (H+2)'H(H +2)*

It follows that

[{(H?>+1) ", Hy]

= (H+1) "[i(H—19)"" Ha| + [((H+1)" Ho|(H—1) !

1 —1

=—(H*+1) HH-1) '—(H+i) 'HH*+1)
= (2 +1) 'HHE+O(E 1) - (B2 1) N H - H(ER 1)
= —(H?>+1) "2H*(H? +1) .



1.5 Time changes of horocycles flows 67-b/115

Thus H? is of class C*®°(H,) with [iH?, Hy] = 2H?, and
BT (I)[iH?, Hy| BT (I) = E¥ (1)2H*E™ (I) > 2inf(I) EF (1)
for each open bounded set I C (0, c0).

Therefore, in the case f = 1, Mourre’s theorem applies to the

operator H2 on the interval (0, o).

So, let’s try the same approach in the case f £ 1...
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If f#£1, one has (H +2)~! € C'(H,) with

W(H+2) ' Hy| =—(H+2)""(Hg+gH)(H+2)™"

and -
9-=5~ 5$Xz(1n(f))-
(note that g = /- D;XZ(]C) > 0 under Kushnirenko's condition)

A calculation as in the case f = 1 shows that

[{(H>+1) ', Hy| = —(H?+1) " (H?9+2HgH + gH?) (H?+1) ",

which means that (H* + 1)~! € C'(H;) with

WH? H,| = H?g+2HgH + gH".
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If g > 0 and f is of class C2, one has

H?g + gH?

— [H?,¢"/%]g"/? + 2g"2H?gV/? 4 g1/2[g1/2, B

> [H?,¢'%)g"? + g"/?[g"/?, H?]

= H[H,g'?]g*? + [H,g**|Hg"? + ¢"/?[¢g"/?,H]|H + g"/?H|[g¢"/? H|

= H[H,g"?]g"* + [H,g"?]g"*H + [H,g"*] [H, g"?]
+g'2[gY?, H|H + Hg"?[¢"/?, H] + [¢"/?, H][¢"/?, H]

= H[H,¢'/?|g"/? + [H, g% g"/?H + 2[H, g"/*]" + ¢*/*[¢"/*, H|H
+ Hg'/?[g'/?, H]

= 2[H, ¢"/*]’

> 0.
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Thus, making everything rigorous, one obtains that
ER(I)[iH?, Hy) BT (1)
— E"(I)(H?g + 2HgH + gH?) E™ (1)

> oEH (I) with a:=2inf(I)- inf g(p) > 0
pEM
for each bounded open set I C (0, co).

Since we also have (H? + 1)~ € C?(H;), we conclude by Mourre’s
theorem that H? is purely absolutely continuous outside {0}, where

it has a simple eigenvalue corresponding to the constant functions.

Standard arguments then imply that A has the same spectral

properties as H?.
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Summing up:

Theorem 1.18. Under Kushnirenko’s condition and for time
changes f of class C?, the self-adjoint operator H associated
with the vector field f X1 has purely absolutely continuous

spectrum, except at 0, where 1t has a simple eigenvalue.

Proof. H and H are unitarily equivalent. []

In fact, this also holds for noncompact surfaces > of finite volume.

Fine, but... Forni and Ulcigrai have obtained the same result (and
also Lebesgue maximal spectral type) without assuming
Kushnirenko’s condition (for compact surfaces and for time changes

in a Sobolev space of order > 11/2).
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So, can we get rid off Kushnirenko's condition 7
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Mourre estimate (one more time)

Lemma 1.19 (Conjugate operator). Let f € C*(M;(0,00)) and
L > 0. Then, the operator

1 rt . .
ALQOZZZ/ dt e Hye " ¢, e CH(M),
0

1s essentially self-adjoint in H.

Idea of the proof. A calculation on C*'(M) shows that

1 b . . .
T / dt e®H H,e "H — —z(cfx + %dva X),
0

for a certain vector field X on M. Furthermore, if f is of class C?,
then the r.h.s. is the self-adjoint generator of a strongly continuous

unitary group (see [Abraham/Marsden 78]). ]

(...if someone knows how to do it for f of class C?...)
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Replacing H, by Ay in the previous calculations and noting that

L L
/ dt ethge—th _ / dt it % HU ge—zt% HY
0 0

1
L L

1 L L~ L~
— / dt %* ethge—th Y
L 0
1 [k ~
= — dit F _

L\/O‘ (go 1, t)’

we obtain that (H2 + 1)~ € C?(A) with
((H*+1) " AL = —(H*+1) " (H g +2Hgr H+gr H*) (H*+1) 7,

where

1 [ ~
gL = 17 / dt (g o Fl,_t).
0
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The flow {ﬁl,t}tER is uniquely ergodic, since it is a reparametrised

version of the uniquely ergodic flow {F} ; }+cr [Humphries 74].

S0, the Cesaro mean gy, = % fOL dt (g 0 ﬁl,—t) converges uniformly
on M to [,,dfiq gr; that is,

_ _ 1 1 ~
Lll_{%ogL:/MdMQQL: 5_5/1\4 MQXXz(ln(f))
1 1 1
_2+2fo_1dNQ/Md“Q$X2(f )
1 1
— - 1, Hyf1
_1
=3

— gr > 01f L > 0 1s big enough.
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S0, we got rid off Kushnirenko’s condition, and thus have proved

the following:

Theorem 1.20. For time changes f of class C°, the
self-adjoint operator H associated with the vector field f X1 has
purely absolutely continuous spectrum, except at 0, where 1t

has a stmple eirgenvalue.

(...if someone knows how to prove countable Lebesgue spectrum...)
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2 Commutator methods for unitary

operators
Commutator methods for unitary operators is the unitary analogue
of commutator methods for self-adjoint operators.

The theory applies to general unitary operators U (not necessarily
of the type e'f), up to the regularity class C11°(A).
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2.1 Unitary operators

A unitary operator U in a Hilbert space H is a surjective isometry;

that is,
U'U=UU"=1.

Since U*U = UU™, the spectral theorem for normal operators
implies that U admits exactly one complex spectral family EY with

support
supp(EY) =o(U) C St :={z € C||z| =1}

such that

U:/CzEU(dz),

where EV(\ + ip) := ERWI(N) E'™U) () for each A\, 4 € R, and

Re(U) = 2(U+0U*) and  Im(U) ::%(U—U*).

1
2
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One has U = [, e** EY(ds) with

(0 if s <0
EY(s) =« EV({e'" | T€10,s]}) ifsel[0 2m)
1 if s > 2.

\

S0, one can use the real spectral family EUY to obtain orthogonal

decompositions

H=Hp(U)®Hsc(U) ®Hac(U)
U =Ulu,w)® Ul ) ® Ulpa (v

as in the self-adjoint case.
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Example 2.1 (1-parameter groups of unitary operators). If H is

a self-adjoint operator in a Hilbert space H, then

Ut N e—itH

1s a unitary operator for each t € R, and the family {U;}icr
defines a strongly continuous 1-parameter group of unitary

operators.

Example 2.2 (Koopman operator). Let T : X — X be an
automorphism of a probability space X with probability measure

u. Then, the Koopman operator Ur in H := L2(X,u) given by
Ur-H—H, @~ @pol,

1S a unitary operator.
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Ergodicity, weak mixing and strong mixing of an automorphism
T : X — X are expressible in terms of spectral properties of the

Koopman operator Uy :

e T 1s ergodic if and only if 1 1s a simple eigenvalue of Ur.

e 7' is weakly mixing if and only if Uy has purely continuous

spectrum in {C - 1}
e T is strongly mixing if and only if

lim (p,Ufe)=0 forall e {C-1}".
n—CcoO

strong mixing —> weak mixing — ergodicity
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2.2 Commutator methods for unitary operators

References:

e M. A. Astaburuaga, O. Bourget, V. H. Cortés, and C. Fernandez,
Floquet operators without singular continuous spectrum. J. Funct.
Anal., 2006.

e C. Fernandez, S. Richard and R. Tiedra, Commutator methods for

unitary operators, to appear in J. Spectr. Theory.

e C. R. Putnam, Commutation properties of Hilbert space operators

and related topics, Springer-Verlag, 1967.
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In |[Astaburuaga/Bourget/Cortés/Ferndndez06], the authors show
an analogue of Mourre’s theorem for a unitary operator U in a
Hilbert space H.

However. ..

e the regularity assumption is U € C?(A),

e the proofs rely once more on differential inequalities for

“resolvents” of U.

We want to obtain this result with the weaker assumption
U € C'°(A) and with a simpler proof !
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At the end of the day, we obtain:

Theorem 2.3 (Spectral properties of U). Let U € C*To(A).

Assume there exist an open set © C S, a number a > 0 and
K € ' (H) such that

EY(©)U*[A,UJEY(©) > aEY(©) + K.

Then, U has at most finitely many eigenvalues in ©

(multiplicities counted), and U has no singular continuous

spectrum 1n ©.
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Sketch of the proof (i)

Why the “commutator” U*|A, U] is the right expression to consider?

Imagine that U = e=* with H € C'(A), then one has

E 1H —ztAe—iH eitA
dt t=0

( E d,Ll, S—i iwH e—itA e—i,uH eitA)
dit du i 0

_ / du S_E ( eHH [ o—itA o—iuH JitA _ JiuH —itA p7 o—ipH gitA )
0

dt t=0

1
— / du (e H[te ™ A] — e [1He ™ A])
0

1
:/ dp e*¥ [1H, Al e "8
0
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Thus,
1
U*A, U] = / du eH [1H, Al e "
0
and positivity of [¢H, A] leads to positivity of U*|A, U] and vice

VErsa.

(the idea of using U*[A, U] dates back to Putnam in the 60’s)
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Sketch of the proof (ii)

As in the self-adjoint case, one can show a Virial theorem which

implies the following:

Corollary 2.4 (Point spectrum of U). Let U and A be
respectively a unitary and a self-adjoint operator in H, with
U c C(A). Assume there exist a Borel set © C S, a number
a>0 and K € 7 (H) such that

EY(©)U*[A,U]EY(©) > aEY(©) + K.

Then, U has at most finitely many eigenvalues in ©

(multiplicities counted).
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If U € CYA) and
EY(@)U*[A,UEY(©) > aEY(0) + K,

then the corollary implies that U has at most finitely many

eigenvalues in © (multiplicities counted).

S0, there exists 8 € ® which i1s not an eigenvalue of U, and the
range Ran(1 — 8U) of 1 — AU is dense in H.

Indeed, if ¥ € H is such that ¢ L Ran(1 — 8U), then

<¢,(1—9_U)<P>:O forallpe H = (1-60U")yY =0
— Uy =09

— Y = 0.
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Furthermore, the Cayley transform of U at the point @; that 1s, the

operator
Hg:= —i(1+0U)(1—8U)"", D(Hp) := Ran(1—6U),
1s self-adjoint.

Indeed, Hy is self-adjoint if and only if

Ran(Hg + 1) = Ran(Hy — 1) = H
<— Ran ( —2:0U(1 — Q_U)_1|Ran(1—9_U))
— Ran ( —21(1 — éU)_l\Ran(l—éU)) =H
— —210UH = —-21H =H
— H=H="H.
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For any Borel set © C S*, the spectral measure B¢ of Hy satisfies

146
E7(I)=EY(®)  with = {—i1+_z|z€@}.

—~

.

Cayley transform of R (for § = —1)
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Sketch of the proof (iii)

One has
(Ho—1)* = {(—i(1+8U) —i(1 — BU))(1 — 6U) 1}

={—2i(1-6U)" "}

= - (1- V).
Thus,
(A, (Hp — i)Y = [A (- éU)] =S au),

and the regularity condition U € C'*°(A) implies the regularity
condition (Hy — 1)~ € C*To(A).



2.2 Commutator methods for unitary operators 92-b/115

Sketch of the proof (iv)

A calculation in % (D(Hg), D(Hp)*) shows that

=\ —1

[iHp, A] = [(1 +6U)(1 - 6U)

(1+06U)[(1—-0U) A +[(1+6U),Al(1—0

=2{(1-0U) '} U*[A,UI(1-8U)~?
So, the positivity of U*[A, U] on a Borel set © C S' implies the
positivity of [¢Hy, A] on the corresponding set I C R.

Since Hy is of class C11%(A), the usual (self-adjoint) Mourre’s

theorem implies that Hy has no singular continuous spectrum in /.
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Now, suppose by absurd that U has some singular continuous
spectrum in © \ {6}. Then, there exist ¢ € H \ {0} and V C [0, 27)
such that

closure(e”) C ©\ {8}, [V|=0 and EY(V)p = o.

This implies that
EPWp=¢p — EY(eV)p=¢ < ET(J)p=ny,
with

1 9_ v
J:{-i*pq\vev}CL
1 —0ew
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But, the function

1+ 0ew
YV3vu— —1 — C
1 —few

has the Luzin N property. So |J| = 0, and thus ¢ = 0 since Hy has

no singular continuous spectrum in J C I.

Since ¢ € ‘H \ {0}, this is a contradiction. So, U has no singular
continuous spectrum in © \ {0}, and thus no singular continuous

spectrum in ©.

No need to re-do any proof with differential inequalities. We
just used the Cayley transform and the pre-existing
self-adjoint theory.
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We also have the following perturbation result:

Corollary 2.5 (Perturbations of U). Let U,V be unitary, with
U,V € CO(A). Assume there exist an open set © C S, a
number a > 0 and K € #(H) such that

EY(@)U*[A,UEY(©) >aEY(0) + K. (2.1)

Suppose also that (V —1) € #(H) is compact. Then, VU has
at most finitely many ergenvalues in each closed subset of ©

(multiplicities counted), and VU has no singular continuous

spectrum 1n ©.

e the Mourre estimate (2.1) depends on U only (V is the
perturbation)

e UV and VU are unitarily equivalent since UV = U(VU)U*
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2.3 Perturbations of bilateral shifts

Let U be a bilateral shift on a Hilbert space ‘H with wandering
subspace M C H, 1.e.,

M L U"(M) for each n € Z\ {0} and ’H:@U”(M).

nez
Using the notation ¢ = {¢,} € H, define the (number) operator

Ap:={np,}, 9eDA)={YeH|>, zn’¥nl* <o},

which i1s self-adjoint since it 1s a maximal multiplication operator in

a £2-space.
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One has for each ¢ € D(A)

(Ap,Up) — (9, UAp) = ({nen}, {@ni1}) — {on}, U{npm})
= {enh {(n + D eni1}) — ({on} {neni1})
=(p,Up),

meaning that U € C®°(4) C C1O(A) with U*[4,U] = U*U = 1

Thus, Theorem 2.3 implies that U has purely absolutely continuous

spectrum, as it 1s well known.

In fact, the conditions U € C'(A) and [A, U] = U imply that
d

S-— €

—1tA U e’itA _ - —tA U e’itA
dt

—1€ — e AU —e 1.

So, U is unitarily equivalent to e * U for each t € R, and thus has

purely Lebesgue spectrum covering the whole circle St.
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Let V be another unitary operator with V € C'*9(A) and
(V—-1) e H(H).

We deduce from Corollary 2.5 that VU has purely absolutely
continuous spectrum except, possibly, at a finite number of points

of St, where VU may have eigenvalues of finite multiplicity.
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2.4 Perturbations of the Schrodinger free

evolution
The Schrodinger free evolution {U; }ier in H := L2(R%) given by
U, -=—e P tcR,
satisfies

o(Uy) = 0ac(U;) =St for each t # 0.

Indeed, one has for each s € [0,27) and ¢ # 0 that
—itP?

Ee (eiS) _ Ecos(—th) ( COS(S)) Esin(—th) ( SiIl(S))

— gtP° ([0, s] + 27 Z) EtF° ([0, s] + 27Z)

- EF ([o, —s/t] + 2%2) .
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What can we say about perturbations of the type VU; ?
The operator
A= % {(PP+1)'P-Q+Q-P(P*+1) '}

is essentially self-adjoint on C°(R%) (because the vector field
Xz :=z(z? +1)7! € R? is complete), and calculations on C°(R%)
show that U; € C*(A) with

= 2tP%(P? + 1) 1.



2.4 Perturbations of the Schrodinger free evolution 101-c/115

Further commutations on C®°(R%) show that U; € C?(A).

Moreover, if £ > 0 and closure(®) N {1} = &, there exists § > 0
such that

EY(©)(U)*[A, U EV(©) > 2t6(6 + 1)L EY(O).

So, all the assumptions for U; are satisfied, and we have:

Lemma 2.6. If V € C'%(A) and (V — 1) € Z(H), then the
eigenvalues of VU, outside {1} are of finite multiplicity and
can accumulate only at {1}. Furthermore, VU has no singular

continuous spectrum.

This extends previous results on the Schrodinger free evolution
perturbed by “periodic kicks” (V = e*® with B = B* of finite rank).
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2.5 Skew products over translations

Let {y:}:cr be a C! one-parameter subgroup of a compact metric
abelian Banach Lie group X with normalised Haar measure y (such

group X is isomorphic to a subgroup of T = (R/Z)%e).
Let {F};}tcr be the corresponding translation flow,
Fi(z) =yz, teR, ze X,

and let {V;}icr the corresponding strongly continuous unitary

group in H = ?(X, u),

Vip:=poF;, teR, e C(X).
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The generator H of {V;}:cr given by
Hp:=—1%p, ¢elC?X),

with Y the vector field associated with {F;}icr and %y the

corresponding Lie derivative, is essentially self-adjoint on C*®°(X).
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Let G be a compact metric abelian group with Haar measure v and
character group @, and let ¢ : X — G be a measurable function

(cocycle).

We want to apply commutator methods to the Koopman operator
Wi :=9oT, 9ecl?*(X xG,uxv),

with T the (measure-preserving invertible) skew product

T:XxG—=XxG, (z,2)— (y1z,¢(z)z2).
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The operator W is reduced by the orthogonal decomposition (given
by the Peter-Weyl theorem)

LZ(XXG,,LLXV):@LX, L, = {g0®x|<p€7-t},
xeG

and W| is unitarily equivalent to the unitary operator

Uyp:=(xop)Vip, @cH.

Furthermore, the operator U, satisfies the following purity law:

If Fy 1s ergodic, the spectrum of U, has uniform multiplicity
and 1s either purely punctual, purely singular continuous or

purely Lebesgue (see [Helson86] in the case X = G =T).
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We assume the following:

Assumption 2.7. The translation F; 1s ergodic and ¢ : X — G
satisfies ¢ = &mn, where

(1) £€: X — G 1s a continuous group homomorphism,

(121) n € C(X;G) has a Lie derwative Ly (x on) which satisfies

b dt
/O — [[Lr(xom)o Fe = L (x 0 n)|| e (x) < 00

T'wo comments:

e x o & encodes the “topological degree” of the cocycle x o ¢.

e (ii) means that % (x o n) is of Dini-type along the translation
flow {Ft}tER-
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Define

o = c;it (xo&)w)|,_» 9:= €o*—&o gyx()cf;n)

and observe that g : X — R is of Dini-type along {F}}:cr and that
A is self-adjoint with D(A) D D(H).

and A:= —1éH

Since A and V; commute, we have for each ¢ € C*°(X) that

(Ap,Uyp) — (p, Uy Ap) = (@, |4, x 0 ¢|Vip)
— <90) _fogY(X O ¢) Vl 90>7
with

Ly(xop)=Ly(xo&)(xom) +(xo&)L(xomn)

— (60 + ) (xo )
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It follows that

(Ap, Uy ) — (o, Uy Ap) = (p,9Uy p),

with g € L°°(X). So, one has U, € C'(A) with |A,U,| = gU, due
to the density of C*°(X) in D(A).

Since g is of Dini-type along {F; }+cr, the equalities

1dt —1itA AU 1itA AU
. THG A, Ux] e =4, X]H@(%)

Pdt s itA
:/0 THe gUxe _gUXH%(’H)
1
_ /0 % |(e7t4 geith _g) e~itA U, eitd 1 g(e A Y, €4 _(,)

|0

imply that U, € C'1°(A).
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If the function g were strictly positive, we would be able to apply

Theorem 2.3 since

(Ux)"[4,Uy] = (Ux)"gUy = inf g(z) > 0.

But, this is a priori not the case since

|2 gY(XOU)
X 0T

= positive constant + total derivative.

g = |&o

Nonetheless, the same averaging of the conjugate operator A as the
one used for horocycle flows may work and lead to a strictly

positive function g.
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Since U, € C'(A), we have U € C'(A) and U. D(A) = D(A) for
each £ € Z, and thus the operator

n—1
. 1 —L L L .
Anp = E;UX AULp == ZU A Ul]o+Ap, ¢ € D(An) :=D(A),

is self-adjoint since 1 37 U*[A,UY] is bounded.

Doing the same calculations as before with A, instead of A, one
obtains that U, € C'T°(A4,) with

1
(A, U, ] Z Uyt =~ > U (gUx) UL = gnUy

and
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Since F is ergodic, we know (see [Cornfeld/Fomin/Sinai82|) that
the flow {F;}scz is uniquely ergodic and that

= S (xod)w)|_ #0 i xoZ1L

Using the notation x o n = €7, we infer that

. A 0
lim gn:/ dpg = |&l* - /du v(xon)
n— o0 X XO’r]

= %] + &o (1,Hfyxm)
— \€o|2

uniformly on X.
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Thus, g, > 0 if n i1s large enough, and
(Ux)"[An, Ux] = (Ux) 90Uy > a}g}f{gn(a:) >0

as desired.

Putting everything together, we obtain the following:

Theorem 2.8 (Spectral properties of W). Let F; be ergodic and
let ¢ satisfy Assumption 2.7 with x o& %21. Then, U, has
purely Lebesque spectrum. In particular, the restriction of W

to the subspace @xeﬁ soez1 Lx C 12(X x G, u x v) has countable

Lebesgue spectrum.
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T'wo remarks:

e In the case X = T¢, G = T% with d,d’ > 1, this complements
previous results of [Iwanik/Lemanczyk/Rudolph93-99|, where
Zy (x om) is of bounded variation instead of Dini-type.

(bounded variation and Dini-continuity are mutually independent)

o If we do not assume that %y (x o n) is of Dini-type, we can
already infer that W has purely continuous spectrum in
@X €8 xot1 L, due to the corollary on the point spectrum

(Corollary 2.4) and the purity law.



