Commutator methods with applications to the spectral analysis of dynamical systems

Rafael Tiedra (Catholic University of Chile)

Penn State, January 2013

Contents

1	Commutator methods for self-adjoint operators			
	1.1	Classical mechanics as a motivation	3	
	1.2	Self-adjoint operators	7	
	1.3	Commutator methods for self-adjoint operators	24	
	1.4	Schrödinger operators	47	
	1.5	Time changes of horocycles flows	57	
2	Commutator methods for unitary operators			
	2.1	Unitary operators	78	
	2.2	Commutator methods for unitary operators	82	
	2.3	Perturbations of bilateral shifts	96	
	2.4	Perturbations of the Schrödinger free evolution	99	
	2.5	Skew products over translations	102	
3	Fur	ther prospects	114	

1 Commutator methods for self-adjoint operators

Commutator methods are a tool for the spectral theory and the scattering theory of self-adjoint operators in Hilbert spaces.

They have been introduced by Éric Mourre in the 80's for the study of Schrödinger operators in $L^2(\mathbb{R}^d)$ (and further developed by Amrein, Boutet de Monvel, Georgescu, Gérard, Jensen, Perry, Sahbani, ...)

1.1 Classical mechanics as a motivation

- M, symplectic/Poisson manifold with Poisson bracket { \cdot , \cdot }
- $H \in C^\infty(M)$, Hamiltonian with complete flow $\{ arphi_t \}_{t \in \mathbb{R}}$
- Hamiltonian evolution equation for an observable $f \in C^\infty(M)$:

$$rac{\mathrm{d}}{\mathrm{d}t}f\circarphi_t=ig\{f,Hig\}\circarphi_t,\quad t\in\mathbb{R}.$$

1.1 Classical mechanics as a motivation

For instance, if $H(q, p) := |p|^2 + V(q)$ on $M := T^* \mathbb{R}^d$ with $V \in C_c^{\infty}(\mathbb{R}^d)$, let's say that we don't want orbits bounded in $|q|^2$.

We want something like:

Since,
$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}|q|^2\circ \varphi_t = \left\{\{|q|^2, H\}, H\right\}\circ \varphi_t$$
, it is sufficient to check that $\left\{\{|q|^2, H\}, H\right\} \ge \delta > 0.$

In the example $H(q,p) = |p|^2 + V(q)$, we get

$$egin{aligned} ig\{ |q|^2, H \}, H ig\} &= ig\{ |q|^2, |p|^2 + V(q) ig\}, H ig\} \ &= ig\{ 4(q \cdot p), |p|^2 + V(q) ig\} \ &= 8 \, |p|^2 - 4 \, q \cdot (
abla V)(q). \end{aligned}$$

$$\text{Thus, } |p|^2 > \tfrac{1}{2} \sup_{q \in \mathbb{R}^n} \left| q \cdot (\nabla V)(q) \right| \text{ implies } \lim_{|t| \to \infty} |q|^2 \circ \varphi_t = +\infty.$$

(If the kinetic energy $|p|^2$ is large enough, all the trajectories go to infinity . . .)

To some extent, the idea behind commutators methods for self-adjoint operators is to translate the last example into the language of the (quantum) Hilbertian theory with the following heuristic dictionnary in mind:

Poisson manifold M	\longleftrightarrow	Hilbert space ${\cal H}$
Poisson bracket $\{\cdot, \cdot\}$	\longleftrightarrow	commutator $i[\cdot, \cdot]$
Hamiltonian $H\in C^\infty(M)$	\longleftrightarrow	self-adjoint operator H in ${\mathcal H}$
$rac{\mathrm{d}}{\mathrm{d}t} f \circ arphi_t = ig\{f,Hig\} \circ arphi_t$	\longleftrightarrow	$rac{\mathrm{d}}{\mathrm{d}t}\mathrm{e}^{-itH}F\mathrm{e}^{itH}=\mathrm{e}^{itH}[iF,H]\mathrm{e}^{-itH}$
bounded orbits of H	\longleftrightarrow	eigenvalues of H

1.2 Self-adjoint operators

References:

- W. O. Amrein, Hilbert Space Methods In Quantum Mechanics, EPFL Press, 2009
- M. Reed and B. Simon, Methods of modern mathematical physics. volumes I-IV, Academic Press, 1980
- J. Weidmann, Linear Operators in Hilbert Spaces, Springer Verlag, 1980

An operator H with dense domain $\mathcal{D}(H)$ in a Hilbert space \mathcal{H} is symmetric if

A vector $\eta \in \mathcal{H}$ belongs to $\mathcal{D}(H^*)$ if there exists $\eta^* \in \mathcal{H}$ such that

$$ig\langle \eta^*, arphi ig
angle = ig\langle \eta, A arphi ig
angle \quad ext{for all } arphi \in \mathcal{D}(H).$$

In this case, one sets $H^*\eta := \eta^*$ and one calls H^* the adjoint of H.

A symmetric operator H is self-adjoint if

 $ig\{H,\mathcal{D}(H)ig\}=ig\{H^*,\mathcal{D}(H^*)ig\},$

which is verified if and only if the ranges $Ran(H \pm i) = \mathcal{H}$.

If H is self-adjoint, then the set $\mathcal{D}(H)$ equipped with the inner product

$$ig\langle arphi,\psiig
angle_{\mathcal{D}(H)}:=ig\langle arphi,\psiig
angle+ig\langle Harphi,H\psiig
angle, \quad arphi,\psi\in\mathcal{D}(H),$$

and the induced norm

$$\|arphi\|^2_{\mathcal{D}(H)} \coloneqq ig\langle arphi, arphi ig
angle_{\mathcal{D}(H)}, \quad arphi \in \mathcal{D}(H),$$

defines a Hilbert space (a complete inner space).

A subspace $\mathscr{D} \subset \mathcal{D}(H)$ is a core for H if the closure of \mathscr{D} in $\mathcal{D}(H)$ is equal to $\mathcal{D}(H)$; that is,

$$\overline{\mathscr{D}}^{\|\cdot\|_{\mathcal{D}(H)}} = \mathcal{D}(H).$$

Example 1.1. The multiplication operator Q in $\mathcal{H} := L^2(\mathbb{R})$ given by

$$(Qarphi)(x):=x\,arphi(x), \quad arphi\in\mathcal{H}_1(\mathbb{R}):=\left\{arphi\in\mathcal{H}\mid\int_{\mathbb{R}}ig(1+|x|^2ig)|arphi(x)|^2<\infty
ight\},$$

is self-adjoint.

Example 1.2. The operator P in $\mathcal{H} := L^2(\mathbb{R})$ given by

$$(Parphi)(x):=-iarphi'(x), \quad arphi\in\mathcal{H}^1(\mathbb{R}):=\mathscr{F}\mathcal{H}_1(\mathbb{R}),$$

with \mathscr{F} the 1-dimensional Fourier transform, is self-adjoint.

(the operator P is just the Fourier transform of the operator Q; that is, $Q = \mathscr{F} P \mathscr{F}^{-1}$)

The space $\mathscr{S}(\mathbb{R})$ of Schwartz functions on \mathbb{R} is a core for Q and P, since $\mathscr{S}(\mathbb{R})$ is dense in the (Sobolev) spaces $\mathcal{H}_1(\mathbb{R})$ and $\mathcal{H}^1(\mathbb{R})$.

Let $\mathscr{B}(\mathcal{H})$ be the set of bounded operators on \mathcal{H} and let H be a self-adjoint operator H in \mathcal{H} .

The set

 $ho(H):=ig\{z\in\mathbb{C}\mid (H-z)^{-1} ext{ exists and belongs to }\mathscr{B}(\mathcal{H})ig\}$

is the resolvent set of H; it is an open subset of \mathbb{C} .

The set $\sigma(H) := \mathbb{C} \setminus \rho(H)$ is the spectrum of H; it is a closed subset of \mathbb{R} .

A spectral family on a Hilbert space \mathcal{H} is a function $E: \mathbb{R} \to \mathscr{B}(\mathcal{H})$ such that

• $E(\lambda)$ is an orthogonal projection for each $\lambda \in \mathbb{R}$, *i.e.*,

$$E(\lambda)=E(\lambda)^*=E(\lambda)^2 \quad ext{for each } \lambda\in\mathbb{R},$$

•
$$E(\mu) \leq E(\lambda)$$
 for all $\mu \leq \lambda$, *i.e.*,
 $\left\langle arphi, E(\mu) arphi
ight
angle \leq \left\langle arphi, E(\lambda) arphi
ight
angle$ for all $arphi \in \mathcal{H}, \ \mu \leq \lambda$ (monotonicity),

- s-lim $_{\varepsilon\searrow 0} E(\lambda + \varepsilon) = E(\lambda)$ for each $\lambda \in \mathbb{R}$ (right continuity),
- s- $\lim_{\lambda\to -\infty} E(\lambda) = 0$ and s- $\lim_{\lambda\to \infty} E(\lambda) = 1$.

For intervals, one defines the spectral measure

 $Eig((a,b]ig):=E(b)-E(a), \quad Eig((a,b)ig):={
m s-}\lim_{arepsilon\searrow 0}E(b-arepsilon)-E(a), \quad {
m etc.}$ and one extends these definitions to $E(\mathcal{V})$ for any Borel set $\mathcal{V}\subset\mathbb{R}.$

Theorem 1.3 (Spectral theorem). A self-adjoint operator H in a Hilbert space \mathcal{H} admits exactly one spectral family E^H such that

$$H=\int_{\mathbb{R}}\lambda\,E^{H}(\mathrm{d}\lambda),$$

with the strong integral $\int_{\mathbb{R}} \lambda \, \mathrm{d} E^H(\mathrm{d}\lambda)$ satisfying

$$\left\langle arphi, \int_{\mathbb{R}} \lambda \, E^{H}(\mathrm{d}\lambda) \, \psi
ight
angle := \int_{\mathbb{R}} \lambda \left\langle arphi, E^{H}(\mathrm{d}\lambda) \, \psi
ight
angle, \quad arphi \in \mathcal{H}, \ \psi \in \mathcal{D}(H).$$

Furthermore, one has for $-\infty < a < b < \infty$ that

$$E^{H}((a,b]) = rac{1}{\pi} \operatorname{s-lim}_{\delta \searrow 0} \operatorname{s-lim}_{\varepsilon \searrow 0} \int_{a+\delta}^{b+\delta} \mathrm{d}\lambda \, \operatorname{Im}(H-\lambda-i\varepsilon)^{-1}.$$

(Stone's Formula)

Two comments:

• The support of the spectral family E^H is the set of points of non-constancy and coincides with the spectrum of H

 $ext{supp}ig(E^Hig) = ig\{\lambda \in \mathbb{R} \mid E^H(\lambda{+}arepsilon){-}E^H(\lambda{-}arepsilon)
eq 0 \ \forall arepsilon > 0ig\} = \sigma(H).$

• Formally, one has

$$egin{aligned} \|H\psi\|^2 &= \langle H\psi, H\psi
angle = \int_{\mathbb{R}}\lambda\int_{\mathbb{R}}\mu\left\langle E^H(\mathrm{d}\mu)\psi, E^H(\mathrm{d}\lambda)\psi
ight
angle \ &= \int_{\mathbb{R}}\lambda\int_{\mathbb{R}}\mu\left\langle \psi, E^H(\mathrm{d}\mu\cap\mathrm{d}\lambda)\psi
ight
angle \ &= \int_{\mathbb{R}}\lambda^2\left\langle \psi, E^H(\mathrm{d}\lambda)\psi
ight
angle, \end{aligned}$$

so that $\psi \in \mathcal{D}(H)$ if and only if $\int_{\mathbb{R}} \lambda^2 \langle \psi, E^H(\mathrm{d}\lambda) \psi \rangle < \infty$.

Example 1.4. The spectral projection $E^Q(\lambda)$ of the operator Qin $\mathcal{H} := \mathsf{L}^2(\mathbb{R})$ is the operator of multiplication by the characteristic function $\chi_{(-\infty,\lambda]}$, i.e.,

$$E^Q(\lambda)arphi:=\chi_{(-\infty,\lambda]}arphi, \quad arphi\in\mathcal{H}.$$

One verifies that

$$\sigma(Q) = \operatorname{supp}(E^Q) = \mathbb{R}.$$

Example 1.5. The multiplication operator $Q^2 := \sum_{j=1}^d Q_j^2$ in $\mathcal{H} := L^2(\mathbb{R}^d)$ given by

$$ig(Q^2 arphiig)(x):=x^2 arphi(x), \quad arphi\in \mathcal{H}_2(\mathbb{R}^d), \,\, x^2:=\sum_{j=1}^d x_j^2,$$

is self-adjoint, and its spectral family is given by

$$E^{Q^2}(\lambda)arphi := egin{cases} \chi_{[-\lambda^{1/2},\lambda^{1/2}]}arphi & ext{if} \ \lambda > 0 \ 0 & ext{if} \ \lambda \leq 0, \end{cases} & arphi \in \mathcal{H}.$$

One verifies that

$$\sigmaig(Q^2ig) = ext{supp}ig(E^{Q^2}ig) = [0,\infty).$$

The Laplacian $-\triangle$ in $\mathcal{H}:=\mathsf{L}^2(\mathbb{R}^d)$ satisfies on $\mathscr{S}(\mathbb{R}^d)$ (and thus on $\mathcal{H}^2(\mathbb{R}^d)$)

$$- riangle = \sum_{j=1}^d P_j^2 \equiv P^2 = \mathscr{F}^{-1} Q^2 \mathscr{F},$$

with \mathscr{F} the *d*-dimensional Fourier transform. So, one has

$$E^{-\bigtriangleup} = E^{\mathscr{F}^{-1}Q^2\mathscr{F}} \stackrel{(\mathrm{Stone})}{=} \mathscr{F}^{-1}E^{Q^2}\mathscr{F}.$$

Let \mathcal{A}_B be the Borel σ -algebra of \mathbb{R} and $|\mathcal{V}|$ be the Lebesgue measure of $\mathcal{V} \in \mathcal{A}_B$.

If H is a self-adjoint operator in \mathcal{H} , one has the orthogonal decompositions

$$\begin{aligned} \mathcal{H} &= \mathcal{H}_{p}(H) \oplus \mathcal{H}_{sc}(H) \oplus \mathcal{H}_{ac}(H) \\ H &= H|_{\mathcal{H}_{p}(H)} \oplus H|_{\mathcal{H}_{sc}(H)} \oplus H|_{\mathcal{H}_{ac}(H)}, \end{aligned}$$

with

The subspaces $\mathcal{H}_{p}(H)$, $\mathcal{H}_{sc}(H)$, $\mathcal{H}_{ac}(H)$ are the pure point subspace of H, the singular continuous subspace of H and the absolutely continuous subspace of H.

The decomposition of \mathcal{H} induces a decomposition of $\sigma(H)$

$$\sigma(H) = \sigma_{p}(H) \cup \sigma_{sc}(H) \cup \sigma_{ac}(H),$$

with

 $\sigma_{p}(H) := \sigma(H|_{\mathcal{H}_{p}(H)})$ the pure point spectrum of H, $\sigma_{sc}(H) := \sigma(H|_{\mathcal{H}_{sc}(H)})$ the singular continuous spectrum of H, $\sigma_{ac}(H) := \sigma(H|_{\mathcal{H}_{ac}(H)})$ the absolutely continuous spectrum of H.

The sets $\sigma_{p}(H)$, $\sigma_{sc}(H)$, $\sigma_{ac}(H)$ are closed and (in general) not mutually disjoint.

Example 1.6. For each $\lambda \in \mathbb{R}$ and $\varphi \in \mathcal{H} := L^2(\mathbb{R})$, one has

$$\begin{split} \left\| E^Q(\lambda) \varphi \right\|^2 &= \left\| \chi_{(-\infty,\lambda]} \varphi \right\|^2 \\ &= \int_{-\infty}^{\lambda} \mathrm{d}x \, |\varphi(x)|^2 \\ &= \mathrm{integral of \ a \ L^1-function} \\ &= \mathrm{absolutely \ continuous \ function.} \end{split}$$

So, $\mathcal{H} = \mathcal{H}_{ac}(Q)$ and Q has purely absolutely continuous spectrum $\sigma(Q) = \sigma_{ac}(Q) = \mathbb{R}$.

In fact, Q has Lebesgue spectrum since $e^{itP} e^{isQ} e^{-itP} = e^{ist} e^{isQ}, s, t \in \mathbb{R} \iff e^{itP} Q e^{-itP} = Q+t, t \in \mathbb{R}.$ (...Stone-von Neumann theorem ...) **Example 1.7.** Let $f : [0,1] \rightarrow [0,1]$ be the Cantor function, and let

$$M_f arphi := f arphi, \quad arphi \in \mathcal{H} := \mathsf{L}^2([0,1]),$$

be the corresponding bounded multiplication operator.

The spectral family of M_f is

$$E^{M_f}(\lambda)arphi := egin{cases} \chi_{f^{-1}([0,\lambda])}arphi & \textit{if} \;\; \lambda \in [0,1] \ 0 & \textit{if} \;\; \lambda \in \mathbb{R} \setminus [0,1], \end{cases} \;\; arphi \in \mathcal{H}.$$

One verifies that

$$\sigma(M_f) = \operatorname{supp}(E^{Q^2}) = \operatorname{Cantor ternary set}$$

and that the function

$$egin{aligned} \left[0,1
ight]
i \lambda &\mapsto \left\| E^{M_f}(\lambda) arphi
ight\|^2 = \left\| \chi_{f^{-1}(\left[0,\lambda
ight])} arphi
ight\|^2 = \int_0^1 \mathrm{d}x \, \chi_{f^{-1}(\left[0,\lambda
ight])}(x) |arphi(x)|^2 \end{aligned}$$

is continuous but not absolutely continuous.

So, $\mathcal{H} = \mathcal{H}_{sc}(M_f)$ and M_f has purely singular continuous spectrum $\sigma(M_f) = \sigma_{sc}(M_f) = \text{Cantor ternary set}.$

An interesting link between spectral theory and dynamics is provided by the following:

Theorem 1.8 (RAGE theorem). Let H be a self-adjoint operator in a Hilbert space \mathcal{H} and let $C \in \mathscr{B}(\mathcal{H})$ be such that $C(H+i)^{-1}$ is compact. Then,

RAGE theorem says that, as time evolves, the state φ in the continuous subspace of H escapes (in Cesàro mean) from the range of the operator C.

(the typical example is when H is a Schrödinger operator in \mathbb{R}^d and Cthe orthogonal projection onto a compact subset of \mathbb{R}^d)

1.3 Commutator methods for self-adjoint operators

References:

- W. O. Amrein, A. Boutet de Monvel and V. Georgescu, *C*₀-groups, commutator methods and spectral theory of *N*-body Hamiltonians, Birhäuser, 1996
- É. Mourre, Absence of singular continuous spectrum for certain selfadjoint operators, Comm. Math. Phys., 1980/81.
- J. Sahbani, The conjugate operator method for locally regular Hamiltonians, J. Operator Theory, 1997.

- \mathcal{H} , Hilbert space with norm $\|\cdot\|$ and scalar product $\langle\cdot,\cdot\rangle$
- $\mathscr{B}(\mathcal{H})$, set of bounded linear operators on \mathcal{H}
- $\mathscr{K}(\mathcal{H})$, set of compact operators on \mathcal{H}
- A, H, self-adjoint operators in \mathcal{H} with domains $\mathcal{D}(A), \mathcal{D}(H)$, spectral families $E^{A}(\cdot), E^{H}(\cdot)$ and spectra $\sigma(A), \sigma(H)$
- The adjoint space of a Banach space \mathcal{B} is defined by

 $egin{aligned} \mathcal{B}^* &:= ig\{ ext{anti-linear continuous functions } \phi : \mathcal{B} o \mathbb{C} ig\} \ \| \phi \|_{\mathcal{B}^*} &:= \sup ig\{ | \phi(arphi) | \mid arphi \in \mathcal{B}, \ \| arphi \|_{\mathcal{B}} \leq 1 ig\} \end{aligned}$

Definition 1.9. An operator $S \in \mathscr{B}(\mathcal{H})$ satisfies $S \in C^k(A)$ if the map

$$\mathbb{R}
i t \mapsto \mathrm{e}^{-itA} \, S \, \mathrm{e}^{itA} \in \mathscr{B}(\mathcal{H})$$

is strongly of class C^k .

In other terms, $S \in C^k(A)$ if there exist

$$B_0(t)\equiv \mathrm{e}^{-itA}\,S\,\mathrm{e}^{itA},B_1(t),B_2(t),\ldots,B_k(t)\in\mathscr{B}(\mathcal{H}),\quad t\in\mathbb{R},$$

such that

$$\lim_{h o 0} \left\|rac{B_j(t+h)-B_j(t)}{h}arphi-B_{j+1}(t)arphi
ight\|=0 ext{ for all } t\in \mathbb{R}, \,\,arphi\in\mathcal{H},$$
 for $j=0,1,\ldots,k-1.$

 $S \in C^1(A)$ if and only if the quadratic form

$$\mathcal{D}(A)
i arphi \mapsto ig\langle Aarphi, Sarphi ig
angle - ig\langle arphi, SAarphi ig
angle \in \mathbb{C}$$

is continuous for the topology induced by \mathcal{H} on $\mathcal{D}(A)$; that is, if

$$ig|ig\langle Aarphi,Sarphiig
angle -ig\langlearphi,SAarphiig
angleig| \leq ext{Const.}\,\|arphi\|^2 \quad ext{for all }arphi\in\mathcal{D}(A).$$

The bounded operator corresponding to the continuous extension of the quadratic form is denoted by [A, S], and one has

$$-[iA,S] = \mathrm{s} \operatorname{-} rac{\mathrm{d}}{\mathrm{d} t} \operatorname{e}^{-itA} S \operatorname{e}^{itA} \Big|_{t=0} \in \mathscr{B}(\mathcal{H}).$$

Example 1.10. Let $f \in L^{\infty}(\mathbb{R})$ be an absolutely continuous function with $f' \in L^{\infty}(\mathbb{R})$, and let

$$M_f arphi := f arphi, \quad arphi \in \mathcal{H} := \mathsf{L}^2(\mathbb{R}),$$

be the corresponding bounded multiplication operator.

Then, one has for each $arphi \in \mathcal{H}$

$$rac{\mathrm{d}}{\mathrm{d}t}\,\mathrm{e}^{-itP}\,M_f\,\mathrm{e}^{itP}\,arphi=rac{\mathrm{d}}{\mathrm{d}t}\,M_{f(\,\cdot\,-t)}\,arphi=-M_{f'(\,\cdot\,-t)}\,arphi,$$

and thus $M_f \in C^1(P)$ with $[iP, M_f] = M_{f'}.$

In the case of (unbounded) self-adjoint operators, we have a similar definition:

Definition 1.11. A self-adjoint operator H is of class $C^k(A)$ if $(H-z)^{-1} \in C^k(A)$ for some $z \in \rho(H)$.

If H is of class $C^1(A)$, then

$$egin{aligned} & ig[A,(H-z)^{-1}ig] = (H-z)^{-1}[H-z,A](H-z)^{-1} \ & = (H-z)^{-1}[H,A](H-z)^{-1}, \end{aligned}$$

with [H, A] the bounded operator from $\mathcal{D}(H)$ to $\mathcal{D}(H)^*$ associated with the continuous extension to $\mathcal{D}(H)$ of the quadratic form

$$\mathcal{D}(H)\cap\mathcal{D}(A)
i arphi\mapstoig\langle Harphi,Aarphiig
angle-ig\langle Aarphi,Harphiig
angle\in\mathbb{C}.$$

Theorem 1.12 (Virial Theorem). Let A, H be self-adjoint operators with H of class $C^{1}(A)$. Then,

 $E^{H}(\{\lambda\})[A,H]E^{H}(\{\lambda\}) = 0$ for each $\lambda \in \mathbb{R}$.

Thus, one has $\langle \varphi, [A, H] \varphi \rangle = 0$ if φ is an eigenvector of H.

Proof. We must show that if $\varphi_1, \varphi_2 \in \mathcal{D}(H)$ satisfy $H\varphi_j = \lambda \varphi_j$ for some $\lambda \in \mathbb{R}$, then $\langle \varphi_1, [A, H] \varphi_2 \rangle = 0$. But,

$$\begin{split} &\left\langle \varphi_{1}, [A, H]\varphi_{2} \right\rangle \\ &= \left\langle (\lambda - i)(H - i)^{-1}\varphi_{1}, [A, H](\lambda + i)(H + i)^{-1}\varphi_{2} \right\rangle \\ &= -(\lambda + i)^{2} \left\langle \varphi_{1}, \left[A, (H + i)^{-1}\right]\varphi_{2} \right\rangle \\ &= -(\lambda + i)^{2} \lim_{\tau \to 0} \left\langle \varphi_{1}, \left[\frac{1}{i\tau}(\mathrm{e}^{i\tau A} - 1), (H + i)^{-1}\right]\varphi_{2} \right\rangle \\ &= -(\lambda + i)^{2} \lim_{\tau \to 0} \frac{1}{i\tau} \left\{ \left\langle \varphi_{1}, \mathrm{e}^{i\tau A}(H + i)^{-1}\varphi_{2} \right\rangle - \left\langle (H - i)^{-1}\varphi_{1}, \mathrm{e}^{i\tau A}\varphi_{2} \right\rangle \right\} \\ &= -(\lambda + i)^{2} \lim_{\tau \to 0} \frac{1}{i\tau} \left\{ 0 \right\}. \end{split}$$

Corollary 1.13 (Point spectrum of H). Let A, H be self-adjoint operators with H of class $C^1(A)$. Assume there exist a Borel set $I \subset \mathbb{R}$, a number a > 0 and $K \in \mathscr{K}(\mathcal{H})$ such that

$$E^{H}(I)[iH,A]E^{H}(I) \ge a E^{H}(I) + K.$$
 (1.1)

Then, H has at most finitely many eigenvalues in I (multiplicities counted).

Some comments:

• If I is bounded, one has

- If I is not bounded, the inequality (1.1) holds in the sense of quadratic forms on $\mathcal{D}(H)$.
- The inequality (1.1) is called a Mourre estimate.

Proof. If $\varphi \in \mathcal{H}$ is an eigenvector of H with $\|\varphi\| = 1$ and with eigenvalue in I, the Mourre inequality (1.1) implies that

$$0 \geq a \left\langle arphi, E^H(I) arphi
ight
angle + \left\langle arphi, K arphi
ight
angle \implies \left\langle arphi, K arphi
ight
angle \leq -a.$$

Now, if the claim were false, there would exist an infinite orthonormal sequence $\{\varphi_j\}$ of eigenvectors of H in $E^H(I)\mathcal{H}$. In particular, one would have w- $\lim_{j\to\infty} \varphi_j = 0$. Since $K \in \mathscr{K}(\mathcal{H})$, this would imply that $\lim_{j\to\infty} \langle \varphi_j, K\varphi_j \rangle = 0$, which contradicts the inequality $\langle \varphi_j, K\varphi_j \rangle \leq -a < 0$.

Note that the proof shows that if K = 0, then H is purely continuous in $I \cap \sigma(H)$.

Example 1.14 (Finite dimension). If $\dim(\mathcal{H}) < \infty$, then A, H are hermitian matrices and $H \in C^{\infty}(A)$.

Furthermore, one has

[iH, A] = 1 + ([iH, A] - 1) = 1 + compact operator,

and the corollary implies (without surprise) that H has at most finitely many eigenvalues in $\sigma(H)$.

Definition 1.15. $S \in C^{1+0}(A)$ if $S \in C^1(A)$ and

$$\int_0^1 \frac{\mathrm{d}t}{t} \, \big\| \, \mathrm{e}^{-itA}[A,S] \, \mathrm{e}^{itA} - [A,S] \big\|_{\mathscr{B}(\mathcal{H})} < \infty.$$

Similarly, a self-adjoint operator H is of class $C^{1+0}(A)$ if $(H-z)^{-1} \in C^{1+0}(A)$ for some $z \in \rho(H)$.

If we regard $C^1(A)$, $C^{1+0}(A)$ and $C^2(A)$ as subspaces of $\mathscr{B}(\mathcal{H})$, we have the inclusions

$$C^2(A) \subset C^{1+0}(A) \subset C^1(A) \subset \mathscr{B}(\mathcal{H}).$$
Example 1.16. Let $f \in L^{\infty}(\mathbb{R})$ be an absolutely continuous function with $f' \in L^{\infty}(\mathbb{R})$ Dini-continuous, and let M_f be the corresponding multiplication operator in $\mathcal{H} := L^2(\mathbb{R})$.

Then, we know that $M_f \in C^1(P)$ with $[iP, M_f] = M_{f'}$, and

$$\begin{split} \int_{0}^{1} \frac{\mathrm{d}t}{t} \| e^{-itP}[P, M_{f}] e^{itP} - [P, M_{f}] \|_{\mathscr{B}(\mathcal{H})} &= \int_{0}^{1} \frac{\mathrm{d}t}{t} \| M_{f'(\cdot -t) - f'} \|_{\mathscr{B}(\mathcal{H})} \\ &= \int_{0}^{1} \frac{\mathrm{d}t}{t} \| f'(\cdot -t) - f' \|_{\mathsf{L}^{\infty}(\mathbb{R})} \\ &< \infty \end{split}$$

due to the Dini-continuity of f'. So, one has $M_f \in C^{1+0}(P)$.

Spectral result of Mourre (and Amrein, Boutet de Monvel, Georgescu, Sahbani,...)

Theorem 1.17 (Spectral properties of H). Let H be of class $C^{1+0}(A)$. Assume there exist an open set $I \subset \mathbb{R}$, a number a > 0 and $K \in \mathscr{K}(\mathcal{H})$ such that

 $E^{H}(I)[iH,A]E^{H}(I) \geq a E^{H}(I) + K.$

Then, H has at most finitely many eigenvalues in I (multiplicities counted), and H has no singular continuous spectrum in I. Some comments:

- the operator A is called a conjugate operator for H on I
- if K = 0, then H is purely absolutely continuous in $I \cap \sigma(H)$
- if H has a spectral gap or satisfies an additional invariance assumption, then one can replace the condition $C^{1+0}(A)$ by a weaker condition $C^{1,1}(A)$

Sketch of the proof of Mourre (i)

One has for $\mu \in \sigma(H)$ and $\varepsilon \in \mathbb{R}$ that

$$ig\|(H-\mu-iarepsilon)^{-1}ig\|=ig\|x\mapsto (x-\mu-iarepsilon)^{-1}ig\|_{\mathsf{L}^\infty(\mathbb{R})}=|arepsilon|^{-1}.$$

Thus, $(H - \mu - i\varepsilon)^{-1}$ cannot have a limit in $\mathscr{B}(\mathcal{H})$ as $\varepsilon \to \pm 0$.

However, for some $\varphi \in \mathcal{H} \setminus \{0\}$, the holomorphic function

$$F:
ho(H) o \mathbb{C}, \quad z\mapstoig\langle arphi,(H-z)^{-1}arphiig
angle,$$

may have a limit

$$F(\mu):=\lim_{arepsilon\searrow 0}F(\mu+iarepsilon)$$

uniformly on each interval $[a, b] \subset I$.

In such a case, Stone's Formula and Lebesgue's dominated convergence theorem imply for $\lambda \in (a, b]$ that

$$\left\|E^{H}((a,\lambda])\varphi\right\|^{2} = \left\langle \varphi, E^{H}((a,\lambda])\varphi \right\rangle = \frac{1}{\pi}\int_{a}^{\lambda} \mathrm{d}\mu \, \operatorname{Im} F(\mu).$$

But, F is continuous on [a, b] due to the uniform convergence of the sequence $F_{\varepsilon}(\cdot) := \langle \varphi, (H - (\cdot) - i\varepsilon)^{-1} \varphi \rangle$. Thus,

 $\operatorname{\mathsf{Im}} F(\mu) \in \operatorname{\mathsf{L}}^1([a,b]) \quad ext{and} \quad E^H(I) arphi \in \mathcal{H}_{\operatorname{ac}}(H).$

Therefore, if there is a dense set of vectors $\varphi \in \mathcal{H}$ satisfying what precedes, then $E^H(I)\mathcal{H} \subset \mathcal{H}_{\mathrm{ac}}(H)$ and H is purely absolutely continuous in $I \cap \sigma(H)$.

Sketch of the proof of Mourre (ii)

Let's show the existence of the limit $\lim_{\varepsilon \searrow 0} F(\mu + i\varepsilon)$ in the homogeneous case [iH, A] = H.

(in such case, one has $e^{-itA} H e^{itA} = e^t H$, and thus we already know that H has homogeneous spectrum on $\mathbb{R} \setminus \{0\}$)

One has for
$$z \in
ho(H)$$

 $z \frac{\mathrm{d}}{\mathrm{d}z} (H-z)^{-1} = z (H-z)^{-2} = (H-z)^{-1} H (H-z)^{-1} - (H-z)^{-1}$ $= \left[iA, (H-z)^{-1}\right] - (H-z)^{-1}$

which gives for $arphi \in \mathcal{D}(A)$

$$z \, rac{\mathrm{d}}{\mathrm{d} z} \, F(z) = -F(z) - ig\langle i A arphi, (H-z)^{-1} ig
angle - ig\langle (H-ar z)^{-1} arphi, i A arphi ig
angle.$$

But, if $z = \mu + i\varepsilon$ with $\varepsilon > 0$, then

$$egin{aligned} & ig\|(H-\mu-iarepsilon)^{-1}arphiig\|^2 &= ig\|(H-\mu+iarepsilon)^{-1}arphiig\|^2 \ &= ig\langlearphi, |H-\mu-iarepsilon|^{-2}arphiig
angle \ &= ig|\langlearphi,arepsilon^{-1}\operatorname{Im}(H-\mu-iarepsilon)^{-1}arphiig
angle ig| \ &= arepsilon^{-1}ig|\operatorname{Im}F(\mu+iarepsilon)ig|. \end{aligned}$$

Thus, we get for
$$z = \mu + i\varepsilon$$
 with $\mu \neq 0$ fixed and $\varepsilon > 0$ that

$$egin{aligned} &\left|zrac{\mathrm{d}}{\mathrm{d}z}F(z)
ight| = \left|-F(z)-ig\langle iAarphi,(H-z)^{-1}ig
angle -ig\langle (H-ar z)^{-1}arphi,iAarphiig
angle
ight| \ &\Longrightarrow \left|rac{\mathrm{d}}{\mathrm{d}arepsilon}F(\mu+iarepsilon)
ight| \leq \left|F(\mu+iarepsilon)
ight| + 2\|Aarphi\|\|(H-\mu-iarepsilon)^{-1}arphi\|\ &\Longrightarrow \left|rac{\mathrm{d}}{\mathrm{d}arepsilon}F(\mu+iarepsilon)
ight| \leq rac{1}{|\mu|}ig(\|arphi\|+2\|Aarphi\|)ig\|(H-\mu-iarepsilon)^{-1}arphi\|\ &\Longrightarrow \left|rac{\mathrm{d}}{\mathrm{d}arepsilon}F(\mu+iarepsilon)
ight| \leq rac{1}{|\mu|}ig(\|arphi\|+2\|Aarphi\|)ig)arepsilon^{-1/2}ig|F(\mu+iarepsilon)arphi^{-1/2}. \end{aligned}$$

Now,

$$ig|F(\mu+iarepsilon)ig|\geqig|\operatorname{Im}F(\mu+iarepsilon)ig|=arepsilonig\|(H-\mu-iarepsilon)^{-1}arphiig\|^2>0$$
 if $arepsilon>0$ and $arphi
eq 0.$

So, one can divide the last inequality by $|F(\mu + i\varepsilon)|^{1/2}$ to get $\frac{\left|\frac{\mathrm{d}}{\mathrm{d}\varepsilon}F(\mu + i\varepsilon)\right|^{1/2}}{|F(\mu + i\varepsilon)|^{1/2}} \leq \frac{1}{|\mu|} (\|\varphi\| + 2\|A\varphi\|) \varepsilon^{-1/2}$ $\iff \left|\frac{\mathrm{d}}{\mathrm{d}\varepsilon}F(\mu + i\varepsilon)^{1/2}\right| \leq \frac{1}{|\mu|} (\|\varphi\| + 2\|A\varphi\|) \frac{1}{2\varepsilon^{1/2}}$ $\stackrel{\int_{\varepsilon}^{1}\mathrm{d}\varepsilon}{\Longrightarrow} |F(\mu + i)^{1/2} - F(\mu + i\varepsilon)^{1/2}| \leq \frac{1}{|\mu|} (\|\varphi\| + 2\|A\varphi\|) (1 - \varepsilon^{1/2})$ $\stackrel{\varepsilon \in (0,1)}{\Longrightarrow} |F(\mu + i\varepsilon)|^{1/2} \leq |F(\mu + i)|^{1/2} + \frac{1}{|\mu|} (\|\varphi\| + 2\|A\varphi\|).$ Putting the last estimate in the inequality

$$\left|rac{{
m d}}{{
m d}arepsilon} F(\mu+iarepsilon)
ight| \leq rac{1}{|\mu|}ig(\|arphi\|+2\|Aarphi\|ig)arepsilon^{-1/2}ig|F(\mu+iarepsilon)ig|^{1/2},$$

one gets for each $|\mu|\geq\delta>0$ and $arepsilon\in(0,1)$

$$egin{aligned} &\left|rac{\mathrm{d}}{\mathrm{d}arepsilon}F(\mu+iarepsilon)
ight| \ &\leq rac{1}{|\mu|}ig(\|arphi\|+2\|Aarphi\|ig)arepsilon^{-1/2}\left\{ig|F(\mu+i)ig|^{1/2}+rac{1}{|\mu|}ig(\|arphi\|+2\|Aarphi\|ig)
ight\} \ &\leq rac{1}{\delta}ig(\|arphi\|+2\|Aarphi\|ig)arepsilon^{-1/2}\left\{\|arphi\|+rac{1}{\delta}ig(\|arphi\|+2\|Aarphi\|ig)ig)
ight\} \ &\leq \mathrm{c}(\delta,arphi)arepsilon^{-1/2}ig(\|arphi\|^2+\|Aarphi\|^2ig). \end{aligned}$$

It follows that $ig\{F(\mu+i/m)ig\}_{m\in\mathbb{N}^*}$ is a Cauchy sequence since

$$egin{aligned} ig|F(\mu+i/m)-F(\mu+i/n)ig|&=\left|\int_{1/n}^{1/m}\mathrm{d}arepsilon\,rac{\mathrm{d}}{\mathrm{d}arepsilon}\,F(\mu+iarepsilon)
ight|\ &\leq\mathrm{c}(\delta,arphi)ig(\|arphi\|^2+\|Aarphi\|^2ig)\left|\int_{1/n}^{1/m}\mathrm{d}arepsilon\,arepsilon^{-1/2}ig|\ &=2\,\mathrm{c}(\delta,arphi)ig(\|arphi\|^2+\|Aarphi\|^2ig)ig|m^{-1/2}-n^{-1/2}ig|\ & o0 \quad \mathrm{as}\ m,n o\infty. \end{aligned}$$

Thus, the limit $\lim_{\varepsilon\searrow 0}F(\mu+i\varepsilon)$ exists uniformly on $|\mu|\geq \delta.$

1.4 Schrödinger operators

Let M_V be the self-adjoint multiplication operator in $\mathcal{H} := L^2(\mathbb{R})$ given by $V \in L^{\infty}(\mathbb{R}; \mathbb{R})$. Then, the 1-dimensional Schrödinger operator

$$Harphi:=- riangle arphi+M_Varphi, \quad arphi\in\mathcal{D}(H):=\mathcal{H}^2(\mathbb{R}),$$

is self-adjoint due to the Kato-Rellich theorem.

(self-adjointness is preserved under the perturbation by a bounded self-adjoint operator)

In quantum mechanics, the operator H describes a non-relativistic particle in \mathbb{R} in presence of a scalar (electric) potential V.

Can we (under some assumptions on V) determine the spectral nature of H ?

Can we do it using commutator methods ?

The family of operators $\{U_t\}_{t\in\mathbb{R}}$ in \mathcal{H} given by

$$(U_t arphi)(x) := \mathrm{e}^{t/2} \, arphi(\mathrm{e}^t \, x), \quad arphi \in \mathscr{S}(\mathbb{R}), \,\, x,t \in \mathbb{R},$$

defines a strongly continuous unitary group (the dilation group).

The self-adjoint generator $A:=i\left(\mathrm{s} - rac{\mathrm{d}}{\mathrm{d}t} U_t \big|_{t=0}
ight)$ of $\{U_t\}_{t\in\mathbb{R}}$ acts as

$$Aarphi:=rac{1}{2}ig(QP+PQig)arphi,\quad arphi\in\mathscr{S}(\mathbb{R}).$$

The operator A is the quantum analogue of the classical observable $q \cdot p$ on $M := T^* \mathbb{R}$ which appeared at the beginning:

$$ig\{ig\{q^2,p^2+V(q)ig\},p^2+V(q)ig\} =ig\{4(q\cdot p),p^2+V(q)ig\} \ = 8\,p^2-4q\cdot (
abla V)(q).$$

... just replace the observables q and p on $M := T^*\mathbb{R}$ by the self-adjoint operators Q and P in \mathcal{H} , and be cautious with the domains and the self-adjointness of the unbounded operators...

One has

$$\begin{split} & e^{-itA} \left(-\Delta + i \right)^{-1} e^{itA} \\ &= \mathscr{F}^{-1} (\mathscr{F} e^{-itA} \mathscr{F}^{-1}) \mathscr{F} (-\Delta + i)^{-1} \mathscr{F}^{-1} (\mathscr{F} e^{itA} \mathscr{F}^{-1}) \mathscr{F} \\ &= \mathscr{F}^{-1} U_{-t} \left(Q^2 + i \right)^{-1} U_t \mathscr{F} \\ &= \mathscr{F}^{-1} \left((e^{-t} Q)^2 + i \right)^{-1} \mathscr{F} \\ &= \left(e^{-2t} (-\Delta) + i \right)^{-1}. \end{split}$$

Thus,

$$\operatorname{s-}rac{\mathrm{d}}{\mathrm{d}t}\operatorname{e}^{-itA}(-\bigtriangleup+i)^{-1}\operatorname{e}^{itA}\Big|_{t=0} = (-\bigtriangleup+i)^{-1}2(-\bigtriangleup)(-\bigtriangleup+i)^{-1},$$

and $-\bigtriangleup$ is of class $C^{\infty}(A)$ with $[iA, -\bigtriangleup] = -2(-\bigtriangleup).$

Similarly, one has

$$\mathrm{e}^{-itA} M_V \,\mathrm{e}^{itA} = M_{V(\mathrm{e}^t \cdot)}.$$

Thus, if V is absolutely continuous with $\mathrm{id}_{\mathbb{R}} \cdot V' \in \mathsf{L}^{\infty}(\mathbb{R})$, one has

$$\operatorname{s-}rac{\mathrm{d}}{\mathrm{d}t}\operatorname{e}^{-itA}\left.M_{V}\operatorname{e}^{itA}
ight|_{t=0}=M_{\operatorname{id}_{\mathbb{R}}\cdot V'},$$

and $M_V \in C^1(A)$ with $[iA, M_V] = M_{\operatorname{id}_{\mathbb{R}} \cdot V'}.$

Furthermore, if V' is Dini-continuous, one has $M_V \in C^{1+0}(A)$ since

$$\begin{split} &\int_{0}^{1} \frac{\mathrm{d}t}{t} \left\| e^{-itA}[A, M_{V}] e^{itA} - [A, M_{V}] \right\|_{\mathscr{B}(\mathcal{H})} \\ &= \int_{0}^{1} \frac{\mathrm{d}t}{t} \left\| (\mathrm{id}_{\mathbb{R}} \cdot V') (e^{t} \cdot) - \mathrm{id}_{\mathbb{R}} \cdot V' \right\|_{\mathsf{L}^{\infty}(\mathbb{R})} \\ &< \infty. \end{split}$$

We infer that H is of class $C^{1+0}(A)$, with

$$[iH,A]=2(- riangle)-M_{\operatorname{id}_{\mathbb{R}}\cdot V'}=2H-M_{(2V-\operatorname{id}_{\mathbb{R}}\cdot V')}.$$

Now, assume that

$$\lim_{|x| o\infty}ig(2V-\mathrm{id}_{\mathbb{R}}\cdot V'ig)(x)=0.$$

Then, a standard result tells us that

$$M_{(2V-\mathrm{id}_{\mathbb{R}}\,\cdot V')}(- riangle +i)^{-1}\in \mathscr{K}(\mathcal{H}).$$

(the products f(Q)g(P) with $f,g \in C(\mathbb{R})$ vanishing at infinity are compact operators)

Given an open bounded set $I \subset \mathbb{R}$, it follows that

$$egin{aligned} &E^{H}(I)[iH,A]E^{H}(I)\ &=2E^{H}(I)HE^{H}(I)-E^{H}(I)M_{(2V-\mathrm{id}_{\mathbb{R}}\cdot V')}E^{H}(I)\ &\geq2\mathrm{inf}(I)E^{H}(I)-E^{H}(I)M_{(2V-\mathrm{id}_{\mathbb{R}}\cdot V')}(-\bigtriangleup+i)^{-1}(-\bigtriangleup+i)E^{H}(I)\ &=2\mathrm{inf}(I)E^{H}(I)+\mathrm{compact\ operator}. \end{aligned}$$

Thus, Theorem 1.17 implies that H has at most finitely many eigenvalues in each open bounded set $I \subset (0, \infty)$ (multiplicities counted), and that H has no singular continuous spectrum in $(0, \infty)$.

(in fact, since $M_V(-\triangle + i)^{-1}$ is compact, one has $\sigma_{ess}(H) = [0, \infty)$, so that $\sigma_{sc}(H) = \varnothing$ and $\sigma_{ac}(H) = [0, \infty)$) Countless variations/generalisations of this example can be found in the literature:

- the potential V may have singularities (for instance of Coulomb-type)
- the potential V may have anisotropies at infinity
- the Schrödinger operator H may contain a magnetic field
- the Schrödinger operator *H* can be replaced by an *N*-body Schrödinger operator
- the Schrödinger operator *H* can be replaced by a quantum field Hamiltonian
- the Schrödinger operator *H* can be replaced by a Dirac operator

 the operator −△ can be replaced by the Laplace-Beltrami operator (on functions or differential forms) on various types of non-compact manifolds

- the operator −△ can be replaced by the combinatorial Laplacian (adjacency matrix) on various types of infinite graphs
- etc...

1.5 Time changes of horocycles flows

References:

- G. Forni and C. Ulcigrai, Time-changes of horocycle flows, J. Mod. Dyn., 2012
- R. Tiedra, Spectral analysis of time changes of horocycle flows, J. Mod. Dyn., 2012.
- R. Tiedra, Commutator methods for the spectral analysis of uniquely ergodic dynamical systems, preprint on arXiv

Horocycle flow

- Σ , compact Riemann surface of genus ≥ 2
- $M := T^1 \Sigma$, unit tangent bundle of Σ
- μ_{Ω} , probability measure on M induced by a volume form Ω

The horocycle flow $\{F_{1,t}\}_{t\in\mathbb{R}}$ and the geodesic flow $\{F_{2,t}\}_{t\in\mathbb{R}}$ are one-parameter groups of diffeomorphisms on M.

Both flows correspond to right translations on M when $M \simeq \Gamma \setminus \mathsf{PSL}(2; \mathbb{R})$, for some cocompact lattice Γ in $\mathsf{PSL}(2; \mathbb{R})$.

1.5 Time changes of horocycles flows

Geodesic in the Poincaré half plane

Horocycle flow in the Poincaré half plane

The operators

$$U_j(t)arphi:=arphi\circ F_{j,t},\quad t\in\mathbb{R},\,\,arphi\in C(M),$$

define strongly continuous unitary groups in $\mathcal{H} := L^2(M, \mu_{\Omega})$ with essentially self-adjoint generators

$$H_jarphi:=-i\,\mathscr{L}_{X_j}arphi,\quad arphi\in C^\infty(M),$$

where X_j is the divergence-free vector field associated with $\{F_{j,t}\}_{t\in\mathbb{R}}$ and \mathscr{L}_{X_j} the corresponding Lie derivative.

The horocycle flow $\{F_{1,t}\}_{t\in\mathbb{R}}$ is uniquely ergodic [Furstenberg 73], mixing of all orders [Marcus 78], and $U_1(t)$ has countable Lebesgue spectrum for each $t \neq 0$ [Parasyuk 53]. The horocycle flow and the geodesic flow satisfy the commutation relation (see for instance [Bachir/Mayer 00])

$$U_2(s)U_1(t)U_2(-s) = U_1(e^s t), \quad s,t \in \mathbb{R},$$
 (1.2)

which is a consequence of the matrix identity in $SL(2,\mathbb{R})$:

$$egin{pmatrix} {
m e}^{s/2} & 0 \ 0 & {
m e}^{-s/2} \end{pmatrix} egin{pmatrix} 1 & t \ 0 & 1 \end{pmatrix} egin{pmatrix} {
m e}^{-s/2} & 0 \ 0 & {
m e}^{s/2} \end{pmatrix} = egin{pmatrix} 1 & {
m e}^s \, t \ 0 & 1 \end{pmatrix}.$$

Therefore, by applying the strong derivatives $\frac{d}{dt}\Big|_{t=0}$ and $\frac{d}{ds}\Big|_{s=0}$ to (1.2), one obtains that H_1 is of class $C^{\infty}(H_2)$ with

$$\begin{bmatrix} iH_1, H_2 \end{bmatrix} = H_1.$$

Time changes of horocycle flows

Consider a C^1 vector field with the same orientation and proportional to X_1 ; that is, fX_1 with $f \in C^1(M; (0, \infty))$.

The reparametrised time coordinate h(p,t) given by

$$t=\int_{0}^{h(p,t)}rac{\mathrm{d}s}{fig(F_{1,s}(p)ig)}\,,\quad t\in\mathbb{R},\,\,p\in M,$$

 $ext{ is such that } h(p,0)=0, \lim_{t o\pm\infty}h(p,t)=\pm\infty ext{ and } rac{\mathrm{d}}{\mathrm{d}t}h(p,t)=fig(F_{1,h(p,t)}(p)ig).$

The function $\mathbb{R}
i t \mapsto \widetilde{F}_{1,t}(p) \in M$ given by $\widetilde{F}_{1,t}(p) := F_{1,h(p,t)}(p)$ satisfies

$$rac{\mathrm{d}}{\mathrm{d}t}\,\widetilde{F}_1(p,t)=(fX_1)_{\widetilde{F}_1(p,t)},\quad \widetilde{F}_1(p,0)=p,$$

and thus $\{\widetilde{F}_{1,t}\}_{t\in\mathbb{R}}$ is the flow of fX_1 .

The operators

$$\widetilde{U}_1(t)arphi:=arphi\circ\widetilde{F}_{1,t}\,,\quad t\in\mathbb{R},\,\,arphi\in C(M),$$

define a strongly continuous unitary group in $\widetilde{\mathcal{H}}:=\mathsf{L}^2(M,\mu_\Omega/f).$

The generator $\widetilde{H} := -i \mathscr{L}_{fX_1}$ of $\{\widetilde{U}_1(t)\}_{t \in \mathbb{R}}$ is essentially self-adjoint on $C^1(M)$ and unitarily equivalent to the operator in \mathcal{H} given by

$$H := f^{1/2} H_1 f^{1/2}.$$

 $(\dots$ the unitary operator $\mathscr{U}:\mathcal{H} o \widetilde{\mathcal{H}}, \ arphi\mapsto f^{1/2}arphi$ realises the unitary equivalence \dots)

What is the spectral nature of \widetilde{H} (or equivalently of H)?

- Spectral properties are in general not preserved under time changes even though basic ergodic properties are preserved under time changes.
- In 1974, Kushnirenko shows that the flow $\{\widetilde{F}_{1,t}\}_{t\in\mathbb{R}}$ is strongly mixing if f is of class C^{∞} and $f \mathscr{L}_{X_2}(f) > 0$. So, \widetilde{H} has purely continuous spectrum in $\mathbb{R} \setminus \{0\}$ in this case.
- In 2006, Katok and Thouvenot conjecture that H
 has absolute continuous spectrum (and even countable Lebesgue spectrum)
 if f is sufficiently smooth.

Mourre estimate

Let $z \in \mathbb{C} \setminus \mathbb{R}$ and assume for a moment that $f \equiv 1$, so that $H \equiv H_1$. Then, one has $(H + z)^{-1} \in C^1(H_2)$ with

$$ig[i(H+z)^{-1},H_2ig] = -(H+z)^{-1}[iH,H_2](H+z)^{-1} \ = -(H+z)^{-1}H(H+z)^{-1}.$$

It follows that

$$egin{aligned} & \left[iig(H^2+1ig)^{-1},H_2
ight]\ &=(H+i)^{-1}ig[i(H-i)^{-1},H_2ig]+ig[i(H+i)^{-1},H_2ig](H-i)^{-1}\ &=-ig(H^2+1ig)^{-1}H(H-i)^{-1}-(H+i)^{-1}Hig(H^2+1ig)^{-1}\ &=-ig(H^2+1ig)^{-1}H(H+i)ig(H^2+1ig)^{-1}-ig(H^2+1ig)^{-1}(H-i)Hig(H^2+1ig)^{-1}\ &=-ig(H^2+1ig)^{-1}2H^2ig(H^2+1ig)^{-1}. \end{aligned}$$

Thus H^2 is of class $C^{\infty}(H_2)$ with $[iH^2, H_2] = 2H^2$, and $E^{H^2}(I)[iH^2, H_2]E^{H^2}(I) = E^{H^2}(I)2H^2E^{H^2}(I) \ge 2\inf(I)E^{H^2}(I)$ for each open bounded set $I \subset (0, \infty)$.

Therefore, in the case $f \equiv 1$, Mourre's theorem applies to the operator H^2 on the interval $(0, \infty)$.

So, let's try the same approach in the case $f \not\equiv 1 \dots$

If
$$f \not\equiv 1$$
, one has $(H+z)^{-1} \in C^1(H_2)$ with
 $[i(H+z)^{-1}, H_2] = -(H+z)^{-1}(Hg+gH)(H+z)^{-1}$ and

$$g:=rac{1}{2}-rac{1}{2}\mathscr{L}_{X_2}ig(\ln(f)ig).$$

(note that $g \equiv \frac{f - \mathscr{L}_{X_2}(f)}{2f} > 0$ under Kushnirenko's condition)

A calculation as in the case $f \equiv 1$ shows that $[i(H^2+1)^{-1}, H_2] = -(H^2+1)^{-1}(H^2g+2HgH+gH^2)(H^2+1)^{-1},$ which means that $(H^2+1)^{-1} \in C^1(H_2)$ with $[iH^2, H_2] = H^2g + 2HgH + gH^2.$

If
$$g > 0$$
 and f is of class C^2 , one has
 $H^2g + gH^2$
 $= [H^2, g^{1/2}]g^{1/2} + 2g^{1/2}H^2g^{1/2} + g^{1/2}[g^{1/2}, H^2]$
 $\geq [H^2, g^{1/2}]g^{1/2} + g^{1/2}[g^{1/2}, H^2]$
 $= H[H, g^{1/2}]g^{1/2} + [H, g^{1/2}]Hg^{1/2} + g^{1/2}[g^{1/2}, H]H + g^{1/2}H[g^{1/2}, H]$
 $= H[H, g^{1/2}]g^{1/2} + [H, g^{1/2}]g^{1/2}H + [H, g^{1/2}][H, g^{1/2}]$
 $+ g^{1/2}[g^{1/2}, H]H + Hg^{1/2}[g^{1/2}, H] + [g^{1/2}, H][g^{1/2}, H]$
 $= H[H, g^{1/2}]g^{1/2} + [H, g^{1/2}]g^{1/2}H + 2[H, g^{1/2}]^2 + g^{1/2}[g^{1/2}, H]H$
 $+ Hg^{1/2}[g^{1/2}, H]$
 $= 2[H, g^{1/2}]^2$
 $\geq 0.$

Thus, making everything rigorous, one obtains that

$$egin{aligned} &E^{H^2}(I)ig[iH^2,H_2ig]E^{H^2}(I)\ &=E^{H^2}(I)ig(H^2g+2HgH+gH^2ig)E^{H^2}(I)\ &\geq aE^{H^2}(I) & ext{ with } a:=2\inf(I)\cdot\inf_{p\in M}g(p)>0 \end{aligned}$$

for each bounded open set $I \subset (0, \infty)$.

Since we also have $(H^2 + 1)^{-1} \in C^2(H_2)$, we conclude by Mourre's theorem that H^2 is purely absolutely continuous outside $\{0\}$, where it has a simple eigenvalue corresponding to the constant functions.

Standard arguments then imply that H has the same spectral properties as H^2 .

Summing up:

Theorem 1.18. Under Kushnirenko's condition and for time changes f of class C^2 , the self-adjoint operator \tilde{H} associated with the vector field fX_1 has purely absolutely continuous spectrum, except at 0, where it has a simple eigenvalue.

Proof. H and \tilde{H} are unitarily equivalent.

In fact, this also holds for noncompact surfaces Σ of finite volume.

Fine, but... Forni and Ulcigrai have obtained the same result (and also Lebesgue maximal spectral type) without assuming Kushnirenko's condition (for compact surfaces and for time changes in a Sobolev space of order > 11/2).
72/115

So, can we get rid off Kushnirenko's condition ?

Mourre estimate (one more time)

Lemma 1.19 (Conjugate operator). Let $f \in C^3(M; (0, \infty))$ and L > 0. Then, the operator

$$A_L arphi := rac{1}{L} \int_0^L \mathrm{d}t \; \mathrm{e}^{itH} \, H_2 \, \mathrm{e}^{-itH} \, arphi, \quad arphi \in C^1(M),$$

is essentially self-adjoint in \mathcal{H} .

Idea of the proof. A calculation on $C^1(M)$ shows that

$$\frac{1}{L}\int_0^L \mathrm{d}t \,\,\mathrm{e}^{itH}\,H_2\,\mathrm{e}^{-itH} = -i\big(\mathscr{L}_X + \tfrac{1}{2}\,\mathrm{div}_\Omega\,X\big),$$

for a certain vector field X on M. Furthermore, if f is of class C^3 , then the r.h.s. is the self-adjoint generator of a strongly continuous unitary group (see [Abraham/Marsden 78]).

(... if someone knows how to do it for f of class C^2 ...)

Replacing H_2 by A_L in the previous calculations and noting that

$$egin{aligned} &rac{1}{L}\int_{0}^{L}\mathrm{d}t\;\mathrm{e}^{itH}\,g\,\mathrm{e}^{-itH} &=rac{1}{L}\int_{0}^{L}\mathrm{d}t\;\mathrm{e}^{it\,\mathscr{U}^{*}\widetilde{H}\mathscr{U}}\,g\,\mathrm{e}^{-it\,\mathscr{U}^{*}\widetilde{H}\mathscr{U}} \ &=rac{1}{L}\int_{0}^{L}\mathrm{d}t\;\mathscr{U}^{*}\,\mathrm{e}^{it\widetilde{H}}\,g\,\mathrm{e}^{-it\widetilde{H}}\,\mathscr{U} \ &=rac{1}{L}\int_{0}^{L}\mathrm{d}t\;(g\circ\widetilde{F}_{1,-t}), \end{aligned}$$

we obtain that $(H^2+1)^{-1}\in C^2(A_L)$ with

$$[i(H^2+1)^{-1}, A_L] = -(H^2+1)^{-1} (H^2 g_L + 2Hg_L H + g_L H^2) (H^2+1)^{-1},$$

where

$$g_L := rac{1}{L} \int_0^L \mathrm{d}t \, ig(g \circ \widetilde{F}_{1,-t} ig).$$

1.5 Time changes of horocycles flows

The flow $\{\widetilde{F}_{1,t}\}_{t\in\mathbb{R}}$ is uniquely ergodic, since it is a reparametrised version of the uniquely ergodic flow $\{F_{1,t}\}_{t\in\mathbb{R}}$ [Humphries 74].

So, the Cesàro mean $g_L = \frac{1}{L} \int_0^L dt \left(g \circ \widetilde{F}_{1,-t} \right)$ converges uniformly on M to $\int_M d\widetilde{\mu}_\Omega g_L$; that is,

$$egin{aligned} &\lim_{L o\infty} g_L = \int_M \mathrm{d} \widetilde{\mu}_\Omega \, g_L = rac{1}{2} - rac{1}{2} \int_M \mathrm{d} \widetilde{\mu}_\Omega \, \mathscr{L}_{X_2}ig(\ln(f)ig) \ &= rac{1}{2} + rac{1}{2\int_M f^{-1} \mathrm{d} \mu_\Omega} \int_M \mathrm{d} \mu_\Omega \, \mathscr{L}_{X_2}ig(f^{-1}ig) \ &= rac{1}{2} + rac{i}{2\int_M f^{-1} \mathrm{d} \mu_\Omega} ig\langle 1, H_2 f^{-1}ig
angle \ &= rac{1}{2} \,. \end{aligned}$$

$$\implies g_L > 0$$
 if $L > 0$ is big enough.

So, we got rid off Kushnirenko's condition, and thus have proved the following:

Theorem 1.20. For time changes f of class C^3 , the self-adjoint operator \tilde{H} associated with the vector field fX_1 has purely absolutely continuous spectrum, except at 0, where it has a simple eigenvalue.

(... if someone knows how to prove countable Lebesgue spectrum ...)

2 Commutator methods for unitary operators

Commutator methods for unitary operators is the unitary analogue of commutator methods for self-adjoint operators.

The theory applies to general unitary operators U (not necessarily of the type e^{iH}), up to the regularity class $C^{1+0}(A)$.

2.1 Unitary operators

A unitary operator U in a Hilbert space \mathcal{H} is a surjective isometry; that is,

$$U^*U = UU^* = 1.$$

Since $U^*U = UU^*$, the spectral theorem for normal operators implies that U admits exactly one complex spectral family E^U with support

$$\mathrm{supp}(E^U)=\sigma(U)\subset \mathbb{S}^1:=ig\{z\in \mathbb{C}\mid |z|=1ig\}$$

such that

$$U=\int_{\mathbb{C}} z \ E^U(\mathrm{d} z),$$

where $E^U(\lambda + i\mu) := E^{\operatorname{Re}(U)}(\lambda) E^{\operatorname{Im}(U)}(\mu)$ for each $\lambda, \mu \in \mathbb{R}$, and

$$\operatorname{Re}(U):=rac{1}{2}\left(U+U^*
ight) \qquad ext{and} \qquad \operatorname{Im}(U):=rac{1}{2i}\left(U-U^*
ight).$$

One has $U=\int_{\mathbb{R}}\mathrm{e}^{is}\;\widetilde{E}^{U}(\mathrm{d}s)$ with

$$\widetilde{E}^{U}(s) := egin{cases} 0 & ext{if } s < 0 \ E^{U}ig(\{ ext{e}^{i au} \mid au \in [0,s]\}ig) & ext{if } s \in [0,2\pi) \ 1 & ext{if } s \geq 2\pi. \end{cases}$$

So, one can use the real spectral family \tilde{E}^U to obtain orthogonal decompositions

$$\mathcal{H} = \mathcal{H}_{p}(U) \oplus \mathcal{H}_{sc}(U) \oplus \mathcal{H}_{ac}(U)$$

 $U = U|_{\mathcal{H}_{p}(U)} \oplus U|_{\mathcal{H}_{sc}(U)} \oplus U|_{\mathcal{H}_{ac}(U)}$

as in the self-adjoint case.

Example 2.1 (1-parameter groups of unitary operators). If H is a self-adjoint operator in a Hilbert space \mathcal{H} , then

$$U_t := \mathrm{e}^{-itH}$$

is a unitary operator for each $t \in \mathbb{R}$, and the family $\{U_t\}_{t \in \mathbb{R}}$ defines a strongly continuous 1-parameter group of unitary operators.

Example 2.2 (Koopman operator). Let $T : X \to X$ be an automorphism of a probability space X with probability measure μ . Then, the Koopman operator U_T in $\mathcal{H} := L^2(X, \mu)$ given by

$$U_T:\mathcal{H}
ightarrow\mathcal{H},\quad arphi\mapstoarphi\circ T,$$

is a unitary operator.

Ergodicity, weak mixing and strong mixing of an automorphism $T: X \to X$ are expressible in terms of spectral properties of the Koopman operator U_T :

- T is ergodic if and only if 1 is a simple eigenvalue of U_T .
- T is weakly mixing if and only if U_T has purely continuous spectrum in {C · 1}[⊥].
- T is strongly mixing if and only if

$$\lim_{n o\infty}ig\langle arphi, U_T^n\,arphiig
angle=0 \quad ext{for all } arphi\in\{\mathbb{C}\cdot1\}^{\perp}.$$

strong mixing \implies weak mixing \implies ergodicity

2.2 Commutator methods for unitary operators References:

- M. A. Astaburuaga, O. Bourget, V. H. Cortés, and C. Fernández, Floquet operators without singular continuous spectrum. J. Funct. Anal., 2006.
- C. Fernández, S. Richard and R. Tiedra, Commutator methods for unitary operators, to appear in J. Spectr. Theory.
- C. R. Putnam, Commutation properties of Hilbert space operators and related topics, Springer-Verlag, 1967.

In [Astaburuaga/Bourget/Cortés/Fernández06], the authors show an analogue of Mourre's theorem for a unitary operator U in a Hilbert space \mathcal{H} .

However . . .

- the regularity assumption is $U \in C^2(A)$,
- the proofs rely once more on differential inequalities for "resolvents" of U.

We want to obtain this result with the weaker assumption $U \in C^{1+0}(A)$ and with a simpler proof !

At the end of the day, we obtain:

Theorem 2.3 (Spectral properties of U). Let $U \in C^{1+0}(A)$. Assume there exist an open set $\Theta \subset \mathbb{S}^1$, a number a > 0 and $K \in \mathscr{K}(\mathcal{H})$ such that

$$E^U(\Theta) U^*[A,U] E^U(\Theta) \geq a E^U(\Theta) + K.$$

Then, U has at most finitely many eigenvalues in Θ (multiplicities counted), and U has no singular continuous spectrum in Θ .

Sketch of the proof (i)

Why the "commutator" $U^*[A, U]$ is the right expression to consider?

Imagine that $U = e^{-iH}$ with $H \in C^1(A)$, then one has

$$\begin{split} &U^{*}[A, U] \\ &= i \left(s - \frac{d}{dt} e^{iH} e^{-itA} e^{-iH} e^{itA} \right)_{t=0} \\ &= i \left(s - \frac{d}{dt} \int_{0}^{1} d\mu \, s - \frac{d}{d\mu} e^{i\mu H} e^{-itA} e^{-i\mu H} e^{itA} \right)_{t=0} \\ &= - \int_{0}^{1} d\mu \, s - \frac{d}{dt} \left(e^{i\mu H} \, H \, e^{-itA} \, e^{-i\mu H} e^{itA} - e^{i\mu H} e^{-itA} \, H \, e^{-i\mu H} e^{itA} \right)_{t=0} \\ &= - \int_{0}^{1} d\mu \left(e^{i\mu H} \, H \left[i \, e^{-i\mu H} , A \right] - e^{i\mu H} \left[i H \, e^{-i\mu H} , A \right] \right) \\ &= \int_{0}^{1} d\mu \, e^{i\mu H} \left[i H, A \right] e^{-i\mu H} \, . \end{split}$$

$$U^*[A,U] = \int_0^1 \mathrm{d}\mu \,\,\mathrm{e}^{i\mu H}\left[iH,A
ight] \mathrm{e}^{-i\mu H},$$

and positivity of [iH, A] leads to positivity of $U^*[A, U]$ and vice versa.

(the idea of using $U^*[A, U]$ dates back to Putnam in the 60's)

Sketch of the proof (ii)

As in the self-adjoint case, one can show a Virial theorem which implies the following:

Corollary 2.4 (Point spectrum of U). Let U and A be respectively a unitary and a self-adjoint operator in \mathcal{H} , with $U \in C^1(A)$. Assume there exist a Borel set $\Theta \subset \mathbb{S}^1$, a number a > 0 and $K \in \mathscr{K}(\mathcal{H})$ such that

$$E^U(\Theta) \, U^*[A,U] \, E^U(\Theta) \geq a E^U(\Theta) + K.$$

Then, U has at most finitely many eigenvalues in Θ (multiplicities counted).

If $U \in C^1(A)$ and

$$E^U(\Theta) \, U^*[A,U] \, E^U(\Theta) \geq a \, E^U(\Theta) + K,$$

then the corollary implies that U has at most finitely many eigenvalues in Θ (multiplicities counted).

So, there exists $\theta \in \Theta$ which is not an eigenvalue of U, and the range $\text{Ran}(1 - \overline{\theta}U)$ of $1 - \overline{\theta}U$ is dense in \mathcal{H} .

Indeed, if $\psi \in \mathcal{H}$ is such that $\psi \perp \mathsf{Ran}(1 - ar{ heta}U)$, then

$$ig\langle\psi,(1-ar{ heta}U)arphiig
angle=0 \quad ext{for all }arphi\in\mathcal{H} \implies (1- heta U^*)\psi=0 \ \implies U\psi= heta\psi \ \implies \psi=0.$$

2.2 Commutator methods for unitary operators

Furthermore, the Cayley transform of U at the point θ ; that is, the operator

$$H_{ heta} := -iig(1+ar{ heta}Uig)ig(1-ar{ heta}Uig)^{-1}, \quad \mathcal{D}(H_{ heta}) := {\sf Ran}(1-ar{ heta}U),$$

is self-adjoint.

Indeed, H_{θ} is self-adjoint if and only if

$$\begin{aligned} \mathsf{Ran}(H_{\theta} + i) &= \mathsf{Ran}(H_{\theta} - i) = \mathcal{H} \\ \iff \mathsf{Ran}\left(-2i\bar{\theta}U(1 - \bar{\theta}U)^{-1}|_{\mathsf{Ran}(1 - \bar{\theta}U)}\right) \\ &= \mathsf{Ran}\left(-2i(1 - \bar{\theta}U)^{-1}|_{\mathsf{Ran}(1 - \bar{\theta}U)}\right) = \mathcal{H} \\ \iff -2i\bar{\theta}U\mathcal{H} = -2i\mathcal{H} = \mathcal{H} \\ \iff \mathcal{H} = \mathcal{H} = \mathcal{H}. \end{aligned}$$

For any Borel set $\Theta \subset \mathbb{S}^1$, the spectral measure $E^{H_{\theta}}$ of H_{θ} satisfies

$$E^{H_{ heta}}(I) = E^U(\Theta) \qquad ext{with} \qquad I := \left\{ -irac{1+ar{ heta}z}{1-ar{ heta}z} \mid z\in\Theta
ight\}.$$

Cayley transform of $\mathbb R$ (for heta=-i)

Sketch of the proof (iii)

One has

$$egin{aligned} (H_{ heta}-i)^{-1} &= ig\{ig(-i(1+ar{ heta}U)-i(1-ar{ heta}U)ig)(1-ar{ heta}U)^{-1}ig\}^{-1} \ &= ig\{-2iig(1-ar{ heta}Uig)^{-1}ig\}^{-1} \ &= -rac{1}{2i}ig(1-ar{ heta}Uig). \end{aligned}$$

Thus,

$$ig[A,(H_ heta-i)^{-1}ig]=ig[A-rac{1}{2i}ig(1-ar heta Uig)ig]=rac{ar heta}{2i}ig[A,Uig],$$

and the regularity condition $U \in C^{1+0}(A)$ implies the regularity condition $(H_{\theta} - i)^{-1} \in C^{1+0}(A)$.

Sketch of the proof (iv)

A calculation in $\mathscr{B}(\mathcal{D}(H_{\theta}), \mathcal{D}(H_{\theta})^*)$ shows that

$$egin{aligned} [iH_{ heta},A] &= ig[ig(1+ar{ heta}Uig)ig(1-ar{ heta}Uig)^{-1},Aig] \ &= ig(1+ar{ heta}Uig)ig[ig(1-ar{ heta}Uig)^{-1},Aig] + ig[ig(1+ar{ heta}Uig),Aig]ig(1-ar{ heta}Uig)^{-1} \ &dots\ &dots\ &= 2ig\{(1-ar{ heta}Uig)^{-1}ig\}^*U^*[A,U]ig(1-ar{ heta}Uig)^{-1} \end{aligned}$$

So, the positivity of $U^*[A, U]$ on a Borel set $\Theta \subset \mathbb{S}^1$ implies the positivity of $[iH_{\theta}, A]$ on the corresponding set $I \subset \mathbb{R}$.

Since H_{θ} is of class $C^{1+0}(A)$, the usual (self-adjoint) Mourre's theorem implies that H_{θ} has no singular continuous spectrum in I.

Now, suppose by absurd that U has some singular continuous spectrum in $\Theta \setminus \{\theta\}$. Then, there exist $\varphi \in \mathcal{H} \setminus \{0\}$ and $\mathcal{V} \subset [0, 2\pi)$ such that

$$\mathrm{closure}ig(\,\mathrm{e}^{i\mathcal{V}}\,ig)\subset\Theta\setminus\{ heta\},\quad |\mathcal{V}|=0\quad\mathrm{and}\quad\widetilde{E}^U(\mathcal{V})arphi=arphi.$$

This implies that

$$\widetilde{E}^U(\mathcal{V})arphi=arphi \quad \Longleftrightarrow \quad E^U(\mathrm{e}^{i\mathcal{V}})arphi=arphi \quad \Longleftrightarrow \quad E^{H_ heta}(J)arphi=arphi,$$

with

$$J:=\left\{-irac{1+ar{ heta}\,\mathrm{e}^{iv}}{1-ar{ heta}\,\mathrm{e}^{iv}}\mid v\in\mathcal{V}
ight\}\subset I.$$

But, the function

$${\cal V}
i v \mapsto -i rac{1+ar heta \, {
m e}^{iv}}{1-ar heta \, {
m e}^{iv}} \in J$$

has the Luzin N property. So |J| = 0, and thus $\varphi = 0$ since H_{θ} has no singular continuous spectrum in $J \subset I$.

Since $\varphi \in \mathcal{H} \setminus \{0\}$, this is a contradiction. So, U has no singular continuous spectrum in $\Theta \setminus \{\theta\}$, and thus no singular continuous spectrum in Θ .

No need to re-do any proof with differential inequalities. We just used the Cayley transform and the pre-existing self-adjoint theory.

We also have the following perturbation result:

Corollary 2.5 (Perturbations of U). Let U, V be unitary, with $U, V \in C^{1+0}(A)$. Assume there exist an open set $\Theta \subset \mathbb{S}^1$, a number a > 0 and $K \in \mathscr{K}(\mathcal{H})$ such that

$$E^{U}(\Theta) U^{*}[A, U] E^{U}(\Theta) \ge a E^{U}(\Theta) + K.$$
(2.1)

Suppose also that $(V - 1) \in \mathscr{K}(\mathcal{H})$ is compact. Then, VU has at most finitely many eigenvalues in each closed subset of Θ (multiplicities counted), and VU has no singular continuous spectrum in Θ .

- the Mourre estimate (2.1) depends on U only (V is the perturbation)
- UV and VU are unitarily equivalent since $UV = U(VU)U^*$

2.3 Perturbations of bilateral shifts

Let U be a bilateral shift on a Hilbert space \mathcal{H} with wandering subspace $\mathcal{M} \subset \mathcal{H}$, *i.e.*,

$$\mathcal{M} \perp U^n(\mathcal{M}) ext{ for each } n \in \mathbb{Z} \setminus \{0\} ext{ and } \mathcal{H} = igoplus_{n \in \mathbb{Z}} U^n(\mathcal{M}).$$

Using the notation $\varphi \equiv \{\varphi_n\} \in \mathcal{H}$, define the (number) operator

$$Aarphi:=\{narphi_n\}, \hspace{1em} arphi\in\mathcal{D}(A):=\left\{\psi\in\mathcal{H}\mid \sum_{n\in\mathbb{Z}}n^2\,\|\psi_n\|^2<\infty
ight\},$$

which is self-adjoint since it is a maximal multiplication operator in a ℓ^2 -space.

One has for each
$$\varphi \in \mathcal{D}(A)$$

 $\langle A \varphi, U \varphi \rangle - \langle \varphi, U A \varphi \rangle = \langle \{n \varphi_n\}, \{\varphi_{n+1}\} \rangle - \langle \{\varphi_n\}, U\{n \varphi_n\} \rangle$
 $= \langle \{\varphi_n\}, \{(n+1) \varphi_{n+1}\} \rangle - \langle \{\varphi_n\}, \{n \varphi_{n+1}\} \rangle$
 $= \langle \varphi, U \varphi \rangle,$

meaning that $U \in C^{\infty}(A) \subset C^{1+0}(A)$ with $U^*[A, U] = U^*U = 1$.

Thus, Theorem 2.3 implies that U has purely absolutely continuous spectrum, as it is well known.

In fact, the conditions $U \in C^1(A)$ and [A, U] = U imply that

$$\operatorname{s-}\frac{\mathrm{d}}{\mathrm{d}t}\operatorname{e}^{-itA}U\operatorname{e}^{itA} = -i\operatorname{e}^{-itA}U\operatorname{e}^{itA} \quad \Longleftrightarrow \quad \operatorname{e}^{-itA}U\operatorname{e}^{itA} = \operatorname{e}^{-it}U.$$

So, U is unitarily equivalent to $e^{-it} U$ for each $t \in \mathbb{R}$, and thus has purely Lebesgue spectrum covering the whole circle \mathbb{S}^1 . Let V be another unitary operator with $V \in C^{1+0}(A)$ and $(V-1) \in \mathscr{K}(\mathcal{H}).$

We deduce from Corollary 2.5 that VU has purely absolutely continuous spectrum except, possibly, at a finite number of points of \mathbb{S}^1 , where VU may have eigenvalues of finite multiplicity.

2.4 Perturbations of the Schrödinger free evolution

The Schrödinger free evolution $\{U_t\}_{t\in\mathbb{R}}$ in $\mathcal{H} := \mathsf{L}^2(\mathbb{R}^d)$ given by

$$U_t:={
m e}^{-itP^2},\quad t\in\mathbb{R},$$

satisfies

$$\sigma(U_t) = \sigma_{
m ac}(U_t) = \mathbb{S}^1 \quad ext{for each } t
eq 0.$$

Indeed, one has for each $s \in [0, 2\pi)$ and $t \neq 0$ that

$$egin{aligned} &E^{\,\mathrm{e}^{-itP^2}}(\,\mathrm{e}^{is}) = E^{\,\mathrm{cos}(-tP^2)}ig(\,\mathrm{cos}(s)ig)\,E^{\,\mathrm{sin}(-tP^2)}ig(\,\mathrm{sin}(s)ig) \ &= E^{\,-tP^2}ig([0,s]+2\pi\mathbb{Z}ig)\,E^{\,-tP^2}ig([0,s]+2\pi\mathbb{Z}ig) \ &= E^{\,P^2}igg([0,-s/t]+rac{2\pi}{t}\mathbb{Z}igg)\,. \end{aligned}$$

What can we say about perturbations of the type VU_t ?

The operator

$$A:=rac{1}{2}\left\{(P^2+1)^{-1}P\cdot Q+Q\cdot P(P^2+1)^{-1}
ight\}$$

is essentially self-adjoint on $C^{\infty}_{c}(\mathbb{R}^{d})$ (because the vector field $X_{x} := x(x^{2}+1)^{-1} \in \mathbb{R}^{d}$ is complete), and calculations on $C^{\infty}_{c}(\mathbb{R}^{d})$ show that $U_{t} \in C^{1}(A)$ with

$$\begin{split} &(U_t)^*[A, U_t] \\ &= \frac{1}{2} \operatorname{e}^{itP^2} \sum_j \left\{ (P^2 + 1)^{-1} P_j[Q_j, \operatorname{e}^{-itP^2}] + [Q_j, \operatorname{e}^{-itP^2}] P_j(P^2 + 1)^{-1} \right\} \\ &= t \operatorname{e}^{itP^2} \sum_j \left\{ (P^2 + 1)^{-1} P_j^2 \operatorname{e}^{-itP^2} + \operatorname{e}^{-itP^2} P_j^2(P^2 + 1)^{-1} \right\} \\ &= 2tP^2(P^2 + 1)^{-1}. \end{split}$$

Further commutations on $C_c^{\infty}(\mathbb{R}^d)$ show that $U_t \in C^2(A)$. Moreover, if t > 0 and $closure(\Theta) \cap \{1\} = \emptyset$, there exists $\delta > 0$

such that

$$E^{U_t}(\Theta)(U_t)^*[A,U_t]E^{U_t}(\Theta) \geq 2t\delta(\delta+1)^{-1}E^{U_t}(\Theta).$$

So, all the assumptions for U_t are satisfied, and we have:

Lemma 2.6. If $V \in C^{1+0}(A)$ and $(V-1) \in \mathscr{K}(\mathcal{H})$, then the eigenvalues of VU_t outside $\{1\}$ are of finite multiplicity and can accumulate only at $\{1\}$. Furthermore, VU has no singular continuous spectrum.

This extends previous results on the Schrödinger free evolution perturbed by "periodic kicks" ($V = e^{iB}$ with $B = B^*$ of finite rank).

2.5 Skew products over translations

Let $\{y_t\}_{t\in\mathbb{R}}$ be a C^1 one-parameter subgroup of a compact metric abelian Banach Lie group X with normalised Haar measure μ (such group X is isomorphic to a subgroup of $\mathbb{T}^{\aleph_0} \equiv (\mathbb{R}/\mathbb{Z})^{\aleph_0}$).

Let $\{F_t\}_{t\in\mathbb{R}}$ be the corresponding translation flow,

$$F_t(x):=y_tx, \quad t\in \mathbb{R}, \,\, x\in X_t$$

and let $\{V_t\}_{t\in\mathbb{R}}$ the corresponding strongly continuous unitary group in $\mathcal{H} := L^2(X, \mu)$,

$$V_t arphi := arphi \circ F_t, \quad t \in \mathbb{R}, \, \, arphi \in C(X).$$

The generator H of $\{V_t\}_{t\in\mathbb{R}}$ given by

$$Harphi:=-i\mathscr{L}_Yarphi, \quad arphi\in C^\infty(X),$$

with Y the vector field associated with $\{F_t\}_{t\in\mathbb{R}}$ and \mathscr{L}_Y the corresponding Lie derivative, is essentially self-adjoint on $C^{\infty}(X)$.

Let G be a compact metric abelian group with Haar measure ν and character group \widehat{G} , and let $\phi : X \to G$ be a measurable function (cocycle).

We want to apply commutator methods to the Koopman operator

$$W\psi:=\psi\circ T\,,\quad\psi\in\mathsf{L}^2(X imes G,\mu imes
u),$$

with T the (measure-preserving invertible) skew product

$$T:X imes G o X imes G, \quad (x,z)\mapstoig(y_1x,\phi(x)zig).$$

The operator W is reduced by the orthogonal decomposition (given by the Peter-Weyl theorem)

$$\mathsf{L}^2(X imes G,\mu imes
u)=igoplus_{\chi\in\widehat{G}}L_\chi\,,\quad L_\chi:=ig\{arphi\otimes\chi\midarphi\in\mathcal{H}ig\},$$

and $W|_{L_{\chi}}$ is unitarily equivalent to the unitary operator

$$U_\chi arphi := (\chi \circ \phi) V_1 arphi, \quad arphi \in \mathcal{H}.$$

Furthermore, the operator U_{χ} satisfies the following purity law:

If F_1 is ergodic, the spectrum of U_{χ} has uniform multiplicity and is either purely punctual, purely singular continuous or purely Lebesgue (see [Helson 86] in the case $X = G = \mathbb{T}$). We assume the following:

Assumption 2.7. The translation F_1 is ergodic and $\phi: X \to G$ satisfies $\phi = \xi \eta$, where

(i) $\xi: X \to G$ is a continuous group homomorphism,

(ii) $\eta \in C(X;G)$ has a Lie derivative $\mathscr{L}_Y(\chi \circ \eta)$ which satisfies

$$\int_0^1 \frac{\mathrm{d} t}{t} \left\| \mathscr{L}_Y(\chi \circ \eta) \circ F_t - \mathscr{L}_Y(\chi \circ \eta) \right\|_{\mathsf{L}^\infty(X)} < \infty.$$

Two comments:

- $\chi \circ \xi$ encodes the "topological degree" of the cocycle $\chi \circ \phi$.
- (ii) means that $\mathscr{L}_Y(\chi \circ \eta)$ is of Dini-type along the translation flow $\{F_t\}_{t \in \mathbb{R}}$.

Define

$$\xi_0:= rac{{\mathrm d}}{{\mathrm d} t} \left(\chi \circ \xi
ight) (y_t) \Big|_{t=0}, \quad g:= |\xi_0|^2 - \xi_0 \, rac{\mathscr{L}_Y(\chi \circ \eta)}{\chi \circ \eta} \quad ext{and} \quad A:= -i \xi_0 H,$$

and observe that $g: X \to \mathbb{R}$ is of Dini-type along $\{F_t\}_{t \in \mathbb{R}}$ and that A is self-adjoint with $\mathcal{D}(A) \supset \mathcal{D}(H)$.

Since A and V_1 commute, we have for each $\varphi \in C^\infty(X)$ that

$$egin{aligned} ig\langle A\,arphi, U_\chi\,arphiig
angle &=ig\langle arphi, ig[A,\chi\circ\phiig]V_1\,arphiig
angle \ &=ig\langle arphi, -\xi_0\,\mathscr{L}_Y(\chi\circ\phi)\,V_1\,arphiig
angle, \end{aligned}$$

with

$$egin{aligned} \mathscr{L}_Y(\chi\circ\phi) &= \mathscr{L}_Y(\chi\circ\xi)\,(\chi\circ\eta) + (\chi\circ\xi)\,\mathscr{L}_Y(\chi\circ\eta) \ &= \left(\xi_0 + rac{\mathscr{L}_Y(\chi\circ\eta)}{\chi\circ\eta}
ight)(\chi\circ\phi). \end{aligned}$$
It follows that

$$\langle A\varphi, U_{\chi}\varphi \rangle - \langle \varphi, U_{\chi}A\varphi \rangle = \langle \varphi, g U_{\chi}\varphi \rangle,$$

with $g \in L^{\infty}(X)$. So, one has $U_{\chi} \in C^{1}(A)$ with $[A, U_{\chi}] = g U_{\chi}$ due to the density of $C^{\infty}(X)$ in $\mathcal{D}(A)$.

Since g is of Dini-type along $\{F_t\}_{t\in\mathbb{R}}$, the equalities

$$\begin{split} &\int_{0}^{1} \frac{\mathrm{d}t}{t} \left\| \operatorname{e}^{-itA} \left[A, U_{\chi} \right] \operatorname{e}^{itA} - \left[A, U_{\chi} \right] \right\|_{\mathscr{B}(\mathcal{H})} \\ &= \int_{0}^{1} \frac{\mathrm{d}t}{t} \left\| \operatorname{e}^{-itA} g U_{\chi} \operatorname{e}^{itA} - g U_{\chi} \right\|_{\mathscr{B}(\mathcal{H})} \\ &= \int_{0}^{1} \frac{\mathrm{d}t}{t} \left\| \left(\operatorname{e}^{-itA} g \operatorname{e}^{itA} - g \right) \operatorname{e}^{-itA} U_{\chi} \operatorname{e}^{itA} + g \left(\operatorname{e}^{-itA} U_{\chi} \operatorname{e}^{itA} - U_{\chi} \right) \right\|_{\mathscr{B}(\mathcal{H})} \end{split}$$

imply that $U_\chi \in C^{1+0}(A).$

If the function g were strictly positive, we would be able to apply Theorem 2.3 since

$$(U_\chi)^*ig[A,U_\chiig]=(U_\chi)^*gU_\chi\geq \inf_{x\in X}g(x)>0.$$

But, this is a priori not the case since

$$g = |\xi_0|^2 - \xi_0 \, rac{\mathscr{L}_Y(\chi \circ \eta)}{\chi \circ \eta} \equiv ext{positive constant} + ext{total derivative.}$$

Nonetheless, the same averaging of the conjugate operator A as the one used for horocycle flows may work and lead to a strictly positive function g.

Since $U_{\chi} \in C^1(A)$, we have $U_{\chi}^{\ell} \in C^1(A)$ and $U_{\chi}^{\ell} \mathcal{D}(A) = \mathcal{D}(A)$ for each $\ell \in \mathbb{Z}$, and thus the operator

$$A_n arphi := rac{1}{n} \sum_{\ell=0}^{n-1} U_\chi^{-\ell} A U_\chi^\ell arphi = rac{1}{n} \sum_{\ell=0}^{n-1} U_\chi^{-\ell} ig[A, U_\chi^\ell ig] arphi + A arphi, \quad arphi \in \mathcal{D}(A_n) := \mathcal{D}(A),$$

is self-adjoint since $\frac{1}{n} \sum_{\ell=0}^{n-1} U_{\chi}^{-\ell} [A, U_{\chi}^{\ell}]$ is bounded.

Doing the same calculations as before with A_n instead of A, one obtains that $U_{\chi} \in C^{1+0}(A_n)$ with

$$[A_n, U_{\chi}] = \frac{1}{n} \sum_{\ell=0}^{n-1} U_{\chi}^{-\ell} [A, U_{\chi}] U_{\chi}^{\ell} = \frac{1}{n} \sum_{\ell=0}^{n-1} U_{\chi}^{-\ell} (g U_{\chi}) U_{\chi}^{\ell} = g_n U_{\chi}$$

and

$$g_n := \left(rac{1}{n} \sum_{\ell=0}^{n-1} U_\chi^{-\ell} g U_\chi^\ell
ight) = rac{1}{n} \sum_{\ell=0}^{n-1} g \circ F_{-\ell}.$$

Since F_1 is ergodic, we know (see [Cornfeld/Fomin/Sinaĭ82]) that the flow $\{F_\ell\}_{\ell \in \mathbb{Z}}$ is uniquely ergodic and that

$$\xi_0 = rac{\mathrm{d}}{\mathrm{d}t} (\chi \circ \xi) (y_t) \Big|_{t=0}
eq 0 \quad \mathrm{if} \quad \chi \circ \xi
eq 1.$$

Using the notation $\chi \circ \eta = \mathrm{e}^{i f_{\chi,\eta}}$, we infer that

$$egin{aligned} &\lim_{n o\infty}g_n=\int_X\mathrm{d}\mu\,g=|\xi_0|^2-\xi_0\int_X\mathrm{d}\mu\,rac{\mathscr{L}_Y(\chi\circ\eta)}{\chi\circ\eta}\ &=|\xi_0|^2+\xi_0\left\langle 1,Hf_{\chi,\eta}
ight
angle\ &=|\xi_0|^2 \end{aligned}$$

uniformly on X.

Thus, $g_n > 0$ if n is large enough, and

$$(U_\chi)^*ig[A_n,U_\chiig]=(U_\chi)^*g_nU_\chi\geq \inf_{x\in X}g_n(x)>0$$

as desired.

Putting everything together, we obtain the following:

Theorem 2.8 (Spectral properties of W). Let F_1 be ergodic and let ϕ satisfy Assumption 2.7 with $\chi \circ \xi \not\equiv 1$. Then, U_{χ} has purely Lebesgue spectrum. In particular, the restriction of W to the subspace $\bigoplus_{\chi \in \widehat{G}, \chi \circ \xi \not\equiv 1} L_{\chi} \subset L^2(X \times G, \mu \times \nu)$ has countable Lebesgue spectrum. Two remarks:

• In the case $X = \mathbb{T}^d$, $G = \mathbb{T}^{d'}$ with $d, d' \ge 1$, this complements previous results of [Iwanik/Lemańczyk/Rudolph93-99], where $\mathscr{L}_Y(\chi \circ \eta)$ is of bounded variation instead of Dini-type.

(bounded variation and Dini-continuity are mutually independent)

 If we do not assume that L_Y(χ ∘ η) is of Dini-type, we can already infer that W has purely continuous spectrum in ⊕_{χ∈G, χ∘ξ≢1} L_χ due to the corollary on the point spectrum (Corollary 2.4) and the purity law.