A formula relating localisation observables to the variation of energy in Hamiltonian dynamics

Rafael Tiedra (Pontificia Universidad Católica de Chile)

Pucón, December 2010

Joint work with Antoine Gournay (Neuchâtel)

2/18

1 Motivation

1 Motivation

Various papers (some with C. Gérard '07 and S. Richard '09-10) on quantum scattering theory put into evidence a useful formula relating time evolution to localisation observables.

1 Motivation

Various papers (some with C. Gérard '07 and S. Richard '09-10) on quantum scattering theory put into evidence a useful formula relating time evolution to localisation observables.

Though simple, this formula does not seem to be known in classical mechanics... (see however [Buslaev/Pushnitski10])

1 Motivation

Various papers (some with C. Gérard '07 and S. Richard '09-10) on quantum scattering theory put into evidence a useful formula relating time evolution to localisation observables.

Though simple, this formula does not seem to be known in classical mechanics... (see however [Buslaev/Pushnitski10])

This is the topic of this talk.

3/18

2 Guiding example

2 Guiding example

Consider the symplectic manifold $M:=T^*\mathbb{R}^d\simeq\mathbb{R}^{2d}$ with coordinates (q,p), 2-form $\omega:=\sum_j\mathrm{d}q^j\wedge\mathrm{d}p_j$ and Poisson bracket $\{\cdot,\cdot\}.$

2 Guiding example

Consider the symplectic manifold $M := T^* \mathbb{R}^d \simeq \mathbb{R}^{2d}$ with coordinates (q, p), 2-form $\omega := \sum_j dq^j \wedge dp_j$ and Poisson bracket $\{\cdot, \cdot\}$.

Let H(q, p) := h(p) be a kinetic energy Hamiltonian with (complete) flow $\{\phi_t\}_{t \in \mathbb{R}}$, let $\Phi(p, q) := q$ the position observable and let χ_1 the characteristic function for $B_1 := \{x \in \mathbb{R}^d \mid |x| \le 1\}$.

3-c/18

2 Guiding example

Consider the symplectic manifold $M := T^* \mathbb{R}^d \simeq \mathbb{R}^{2d}$ with coordinates (q, p), 2-form $\omega := \sum_j dq^j \wedge dp_j$ and Poisson bracket $\{\cdot, \cdot\}$.

Let H(q,p) := h(p) be a kinetic energy Hamiltonian with (complete) flow $\{\phi_t\}_{t \in \mathbb{R}}$, let $\Phi(p,q) := q$ the position observable and let χ_1 the characteristic function for $B_1 := \{x \in \mathbb{R}^d \mid |x| \le 1\}$.

Then one has for $(p, q) \in M$ with $(\nabla h)(p) \neq 0$

$$\begin{split} &\lim_{r\to\infty} \frac{1}{2} \int_0^\infty \mathrm{dt} \left[\left(\chi_1(\Phi/r) \circ \varphi_{-t} \right)(p,q) - \left(\chi_1(\Phi/r) \circ \varphi_t \right)(p,q) \right] = \mathsf{T}(p,q) \,, \\ &\text{where } \mathsf{T}(p,q) = \frac{q \cdot (\nabla h)(p)}{(\nabla h)(p)^2} \end{split}$$

2 Guiding example

Consider the symplectic manifold $M := T^* \mathbb{R}^d \simeq \mathbb{R}^{2d}$ with coordinates (q, p), 2-form $\omega := \sum_j dq^j \wedge dp_j$ and Poisson bracket $\{\cdot, \cdot\}$.

Let H(q,p) := h(p) be a kinetic energy Hamiltonian with (complete) flow $\{\phi_t\}_{t \in \mathbb{R}}$, let $\Phi(p,q) := q$ the position observable and let χ_1 the characteristic function for $B_1 := \{x \in \mathbb{R}^d \mid |x| \le 1\}$.

Then one has for $(p,q) \in M$ with $(\nabla h)(p) \neq 0$

$$\begin{split} \lim_{r \to \infty} \frac{1}{2} \int_0^\infty \mathrm{dt} \left[\left(\chi_1(\Phi/r) \circ \varphi_{-t} \right)(p, q) - \left(\chi_1(\Phi/r) \circ \varphi_t \right)(p, q) \right] &= \mathsf{T}(p, q) \,, \\ \end{split}$$
where $\mathsf{T}(p, q) = \frac{q \cdot (\nabla h)(p)}{(\nabla h)(p)^2} \propto \frac{\mathrm{length} \times \mathrm{velocity}}{\mathrm{velocity}^2} \propto \mathrm{time.} \end{split}$

• For r > 0 fixed, the l.h.s. is equal to the difference of times spent by the orbit $\{\phi_t(p,q)\}_{t\in\mathbb{R}}$ in the past and in the future within $B_r := \{x \in \mathbb{R}^d \mid |x| \le r\}.$

- For r > 0 fixed, the l.h.s. is equal to the difference of times spent by the orbit $\{\phi_t(p,q)\}_{t\in\mathbb{R}}$ in the past and in the future within $B_r := \{x \in \mathbb{R}^d \mid |x| \le r\}.$
- The map $\frac{d}{dH} := \{T, \cdot\}$ is a derivation on $C^{\infty}(M)$, so T can be seen as an observable "derivative with respect to the energy H" on M, since

$$\frac{\mathrm{d}}{\mathrm{d}H}(\mathrm{H}) \equiv \left\{\mathsf{T},\mathsf{H}\right\} = \left\{\frac{\mathsf{q}\cdot(\nabla\mathsf{h})(\mathsf{p})}{(\nabla\mathsf{h})(\mathsf{p})^2},\mathsf{h}(\mathsf{p})\right\} = \sum_{\mathsf{j}}\left\{\mathsf{q}_{\mathsf{j}},\mathsf{h}(\mathsf{p})\right\}\frac{(\partial_{\mathsf{j}}\mathsf{h})(\mathsf{p})}{(\nabla\mathsf{h})(\mathsf{p})^2} = 1.$$

- For r > 0 fixed, the l.h.s. is equal to the difference of times spent by the orbit $\{\phi_t(p,q)\}_{t\in\mathbb{R}}$ in the past and in the future within $B_r := \{x \in \mathbb{R}^d \mid |x| \le r\}.$
- The map $\frac{d}{dH} := \{T, \cdot\}$ is a derivation on $C^{\infty}(M)$, so T can be seen as an observable "derivative with respect to the energy H" on M, since

$$\frac{\mathrm{d}}{\mathrm{d}H}(\mathrm{H}) \equiv \left\{\mathsf{T},\mathsf{H}\right\} = \left\{\frac{\mathsf{q}\cdot(\nabla\mathsf{h})(\mathsf{p})}{(\nabla\mathsf{h})(\mathsf{p})^2},\mathsf{h}(\mathsf{p})\right\} = \sum_{\mathsf{j}}\left\{\mathsf{q}_{\mathsf{j}},\mathsf{h}(\mathsf{p})\right\} \frac{(\partial_{\mathsf{j}}\mathsf{h})(\mathsf{p})}{(\nabla\mathsf{h})(\mathsf{p})^2} = \mathsf{1}.$$

The formula provides a relation between sojourn times and variation of energy along classical orbits.

The formula can be extended to abstract Hamiltonians H and abstract position observables Φ on a symplectic manifold M, if H and Φ satisfy an appropriate "commutation" relation.

6/18

3 Framework

• M, finite or infinite-dimensional symplectic manifold with symplectic 2-form ω and Poisson bracket { \cdot , \cdot }

- M, finite or infinite-dimensional symplectic manifold with symplectic 2-form ω and Poisson bracket { \cdot, \cdot }
- $H \in C^{\infty}(M)$, Hamiltonian on M with vector field X_H and complete flow $\{\phi_t\}_{t \in \mathbb{R}}$

- M, finite or infinite-dimensional symplectic manifold with symplectic 2-form ω and Poisson bracket { \cdot, \cdot }
- $H \in C^{\infty}(M)$, Hamiltonian on M with vector field X_H and complete flow $\{\phi_t\}_{t \in \mathbb{R}}$
- $\Phi \equiv (\Phi_1, \dots, \Phi_d) \in C^{\infty}(M; \mathbb{R}^d)$, a family of observables.

- M, finite or infinite-dimensional symplectic manifold with symplectic 2-form ω and Poisson bracket { \cdot, \cdot }
- $H \in C^{\infty}(M)$, Hamiltonian on M with vector field X_H and complete flow $\{\phi_t\}_{t \in \mathbb{R}}$
- $\Phi \equiv (\Phi_1, \dots, \Phi_d) \in C^{\infty}(M; \mathbb{R}^d)$, a family of observables.

Assumption:

 $\{\{\Phi_j, H\}, H\} = 0 \text{ for each } j.$

4 Main theorem

Under the Assumption, we have:

Theorem 4.1. There exist a closed subset $Crit(H, \Phi) \subset M$ and an observable $T \in C^{\infty}(M \setminus Crit(H, \Phi))$ satisfying $\{T, H\} = 1$ on $M \setminus Crit(H, \Phi)$ such that

$$\lim_{r \to \infty} \frac{1}{2} \int_0^\infty dt \left[\left(\chi_1(\Phi/r) \circ \phi_{-t} \right)(\mathfrak{m}) - \left(\chi_1(\Phi/r) \circ \phi_t \right)(\mathfrak{m}) \right] = \mathsf{T}(\mathfrak{m})$$
(Formula)

for each $\mathfrak{m} \in \mathfrak{M} \setminus \operatorname{Crit}(\mathfrak{H}, \Phi)$.

Remark 1:

Let $\partial_j H := {\Phi_j, H}$ for each j. Then, the vector $\nabla H := (\partial_1 H, \dots, \partial_d H)$ is an abstract velocity observable for the pair (H, Φ) , and

$$\mathsf{T} = \frac{\Phi \cdot \nabla \mathsf{H}}{(\nabla \mathsf{H})^2} \,.$$

Remark 1:

Let $\partial_j H := {\Phi_j, H}$ for each j. Then, the vector $\nabla H := (\partial_1 H, \dots, \partial_d H)$ is an abstract velocity observable for the pair (H, Φ) , and

$$\mathsf{T} = \frac{\Phi \cdot \nabla \mathsf{H}}{(\nabla \mathsf{H})^2} \,.$$

Due to the Assumption, we have once more

$$\left\{\mathsf{T},\mathsf{H}\right\} = \left\{\frac{\Phi\cdot\nabla\mathsf{H}}{(\nabla\mathsf{H})^2},\mathsf{H}\right\} = \sum_{j} \left\{\Phi_{j},\mathsf{H}\right\} \frac{(\partial_{j}\mathsf{H})}{(\nabla\mathsf{H})^2} = 1.$$

Remark 2:

We must avoid the case " $\nabla H = 0$ ", which leads to non-definiteness of the observable T.

9-a/18

Remark 2:

We must avoid the case " $\nabla H = 0$ ", which leads to non-definiteness of the observable T.

This suggests the definition:

Definition 4.2. $Crit(H, \Phi) := (\nabla H)^{-1}(\{0\}) \subset M$.

9-b/18

Remark 2:

We must avoid the case " $\nabla H = 0$ ", which leads to non-definiteness of the observable T.

This suggests the definition:

Definition 4.2. $Crit(H, \Phi) := (\nabla H)^{-1}(\{0\}) \subset M$.

• $Crit(H, \Phi)$ is closed in M.

9-c/18

Remark 2:

We must avoid the case " $\nabla H = 0$ ", which leads to non-definiteness of the observable T.

This suggests the definition:

Definition 4.2. $Crit(H, \Phi) := (\nabla H)^{-1}(\{0\}) \subset M$.

- $Crit(H, \Phi)$ is closed in M.
- The usual critical set Crit(H) is contained in $Crit(H, \Phi)$, *i.e.*

 $\mathsf{Crit}(\mathsf{H}) \equiv \big\{ \mathfrak{m} \in \mathsf{M} \mid \mathsf{X}_\mathsf{H}(\mathfrak{m}) = \mathfrak{0} \big\} \subset \mathsf{Crit}(\mathsf{H}, \Phi).$

Remark 2:

We must avoid the case " $\nabla H = 0$ ", which leads to non-definiteness of the observable T.

This suggests the definition:

Definition 4.2. $Crit(H, \Phi) := (\nabla H)^{-1}(\{0\}) \subset M$.

- $Crit(H, \Phi)$ is closed in M.
- The usual critical set Crit(H) is contained in $Crit(H, \Phi)$, *i.e.*

 $\mathsf{Crit}(\mathsf{H}) \equiv \left\{ \mathfrak{m} \in \mathsf{M} \mid \mathsf{X}_{\mathsf{H}}(\mathfrak{m}) = \mathfrak{0} \right\} \subset \mathsf{Crit}(\mathsf{H}, \Phi).$

• Each orbit $\{\phi_t(m)\}_{t\in\mathbb{R}}$ either stays in $Crit(H, \Phi)$ if $m \in Crit(H, \Phi)$, or stays outside $Crit(H, \Phi)$ and is not periodic if $m \notin Crit(H, \Phi)$.

Remark 3 (application):

Consider a scattering pair (H, H + V) with scattering map S.

10-a/18

Remark 3 (application):

Consider a scattering pair (H, H + V) with scattering map S.

The classical time delay $\tau(m)$ for the initial condition $m \in M \setminus Crit(; \Phi)$ defined in terms of the balls B_r can be expressed as follows:

 $\tau(m)$ is equal to the l.h.s. of (Formula) minus the same quantity with m replaced by S(m).

10-b/18

Remark 3 (application):

Consider a scattering pair (H, H + V) with scattering map S.

The classical time delay $\tau(m)$ for the initial condition $m \in M \setminus Crit(; \Phi)$ defined in terms of the balls B_r can be expressed as follows:

 $\tau(m)$ is equal to the l.h.s. of (Formula) minus the same quantity with m replaced by S(m).

Thus

$$\tau(\mathfrak{m}) = (\mathsf{T} - \mathsf{T} \circ \mathsf{S})(\mathfrak{m}).$$

10-c/18

Remark 3 (application):

Consider a scattering pair (H, H + V) with scattering map S.

The classical time delay $\tau(m)$ for the initial condition $m \in M \setminus Crit(; \Phi)$ defined in terms of the balls B_r can be expressed as follows:

 $\tau(m)$ is equal to the l.h.s. of (Formula) minus the same quantity with m replaced by S(m).

Thus

$$\tau(\mathfrak{m}) = (\mathsf{T} - \mathsf{T} \circ \mathsf{S})(\mathfrak{m}).$$

(Classical Eisenbud-Wigner Formula supporting Buslaev/Pushnitski...)

10-d/18

Remark 3 (application):

Consider a scattering pair (H, H + V) with scattering map S.

The classical time delay $\tau(m)$ for the initial condition $m \in M \setminus Crit(; \Phi)$ defined in terms of the balls B_r can be expressed as follows:

 $\tau(m)$ is equal to the l.h.s. of (Formula) minus the same quantity with m replaced by S(m).

Thus

$$\tau(\mathfrak{m}) = (\mathsf{T} - \mathsf{T} \circ \mathsf{S})(\mathfrak{m}).$$

(Classical Eisenbud-Wigner Formula supporting Buslaev/Pushnitski...)

Furthermore, one can check that

$$\tau(\mathfrak{m}) = (\tau \circ \phi_t)(\mathfrak{m}) \ \, \mathrm{for \ each} \ t \in \mathbb{R},$$

so classical time delay is a first integral for the free motion.

11/18

5 Examples

11**-**a/18

5 Examples

The framework covers many examples:

• Stark Hamiltonians,

11-b/18

5 Examples

- Stark Hamiltonians,
- Homogeneous Hamiltonians,

11-c/18

5 Examples

- Stark Hamiltonians,
- Homogeneous Hamiltonians,
- Kinetic Hamiltonians (we have seen them...),

11 - d/18

5 Examples

- Stark Hamiltonians,
- Homogeneous Hamiltonians,
- Kinetic Hamiltonians (we have seen them...),
- Repulsive harmonic potential,

11-e/18

5 Examples

- Stark Hamiltonians,
- Homogeneous Hamiltonians,
- Kinetic Hamiltonians (we have seen them...),
- Repulsive harmonic potential,
- Simple pendulum,

11-f/18

5 Examples

- Stark Hamiltonians,
- Homogeneous Hamiltonians,
- Kinetic Hamiltonians (we have seen them...),
- Repulsive harmonic potential,
- Simple pendulum,
- Central force systems,

• Poincaré ball model,

- Poincaré ball model,
- Covering manifolds,

12-b/18

- Poincaré ball model,
- Covering manifolds,
- Wave (Klein-Gordon) equation,

12-c/18

- Poincaré ball model,
- Covering manifolds,
- Wave (Klein-Gordon) equation,
- Nonlinear Schrödinger equation,

12 - d/18

- Poincaré ball model,
- Covering manifolds,
- Wave (Klein-Gordon) equation,
- Nonlinear Schrödinger equation,
- Korteweg-de Vries equation,

- Poincaré ball model,
- Covering manifolds,
- Wave (Klein-Gordon) equation,
- Nonlinear Schrödinger equation,
- Korteweg-de Vries equation,
- Quantum Hamiltonians defined via expectation values.

13/18

Example 5.1 (Poincaré ball model). Put on $B_1 \subset \mathbb{R}^n$ the Riemannian metric

$$g_{q}(X_{q}, Y_{q}) := \frac{4}{(1-|q|^{2})^{2}}(X_{q} \cdot Y_{q}), \quad q \in B_{1}, X_{q}, Y_{q} \in T_{q}B_{1} \simeq \mathbb{R}^{n}.$$

13-a/18

Example 5.1 (Poincaré ball model). Put on $B_1 \subset \mathbb{R}^n$ the Riemannian metric

$$g_q(X_q, Y_q) := \frac{4}{(1-|q|^2)^2} (X_q \cdot Y_q), \quad q \in B_1, \ X_q, Y_q \in T_q B_1 \simeq \mathbb{R}^n.$$

Consider on $M := T^*B_1 \simeq \{(q, p) \in B_1 \times \mathbb{R}^n\}$, with symplectic form $\omega := \sum_j dq^j \wedge dp_j$, the kinetic energy Hamiltonian

$$H: M \to \mathbb{R}, \quad (q, p) \mapsto \frac{1}{2} \sum_{j, k} g^{jk}(q) p_j p_k = \frac{1}{8} |p|^2 (1 - |q|^2)^2.$$

Then:

Then:

• X_H is complete, since the integral curves of X_H correspond to the geodesics curves of (B_1, g) , and (B_1, g) is geodesically complete.

Then:

- X_H is complete, since the integral curves of X_H correspond to the geodesics curves of (B_1, g) , and (B_1, g) is geodesically complete.
- The observable

$$\Phi: \mathcal{M} \to \mathbb{R}, \quad (\mathfrak{q}, \mathfrak{p}) \mapsto e^{-1/\mathcal{H}(\mathfrak{q}, \mathfrak{p})} \tanh^{-1} \left(\frac{(\mathfrak{p} \cdot \mathfrak{q})(1 - |\mathfrak{q}|^2)}{\sqrt{2\mathcal{H}(\mathfrak{q}, \mathfrak{p})}(1 + |\mathfrak{q}|^2)} \right).$$

satisfies the Assumption, since

$$\left\{ \{\Phi, \mathsf{H}\}, \mathsf{H} \right\} = \left\{ \, \mathrm{e}^{-1/\mathsf{H}} \, \sqrt{2\mathsf{H}}, \mathsf{H} \right\} = \mathfrak{0}.$$

Then:

- X_H is complete, since the integral curves of X_H correspond to the geodesics curves of (B_1, g) , and (B_1, g) is geodesically complete.
- The observable

$$\Phi: \mathcal{M} \to \mathbb{R}, \quad (\mathfrak{q}, \mathfrak{p}) \mapsto e^{-1/\mathcal{H}(\mathfrak{q}, \mathfrak{p})} \tanh^{-1} \left(\frac{(\mathfrak{p} \cdot \mathfrak{q})(1 - |\mathfrak{q}|^2)}{\sqrt{2\mathcal{H}(\mathfrak{q}, \mathfrak{p})}(1 + |\mathfrak{q}|^2)} \right).$$

satisfies the Assumption, since

$$\left\{ \{\Phi, \mathsf{H}\}, \mathsf{H} \right\} = \left\{ \, \mathrm{e}^{-1/\mathsf{H}} \, \sqrt{2\mathsf{H}}, \mathsf{H} \right\} = \mathfrak{0}.$$

• $Crit(H) = Crit(H, \Phi) = B_1 \times \{0\}.$

Example 5.3 (NLS). Follow [Kuksin93] for the Hamiltonian formulation:

Example 5.3 (NLS). Follow [Kuksin93] for the Hamiltonian formulation:

Real symplectic vector space $M := L^2(\mathbb{R}) \oplus L^2(\mathbb{R})$ with 2-form

$$\omega((\mathfrak{p},\mathfrak{q}),(\widetilde{\mathfrak{p}},\widetilde{\mathfrak{q}})) := \langle (\mathfrak{q},-\mathfrak{p}),(\widetilde{\mathfrak{p}},\widetilde{\mathfrak{q}}) \rangle.$$

15-b/18

Example 5.3 (NLS). Follow [Kuksin93] for the Hamiltonian formulation:

Real symplectic vector space $M := L^2(\mathbb{R}) \oplus L^2(\mathbb{R})$ with 2-form

$$\omega((\mathfrak{p},\mathfrak{q}),(\widetilde{\mathfrak{p}},\widetilde{\mathfrak{q}})) := \langle (\mathfrak{q},-\mathfrak{p}),(\widetilde{\mathfrak{p}},\widetilde{\mathfrak{q}}) \rangle.$$

Given $V, F \in C^{\infty}(\mathbb{R};\mathbb{R})$, there exists $\mathcal{O}_1 \subset \mathcal{H}^1(\mathbb{R}) \oplus \mathcal{H}^1(\mathbb{R})$ such that

$$H: \mathcal{O}_1 \to \mathbb{R}, \quad (p, q) \mapsto \frac{1}{2} \int_{\mathbb{R}} \mathrm{d}x \left\{ (\partial_x p)^2 + (\partial_x q)^2 + V \cdot (p^2 + q^2) + F(p^2 + q^2) \right\},$$

is well-defined and (Fréchet) C^{∞} .

15 - c/18

Example 5.3 (NLS). Follow [Kuksin93] for the Hamiltonian formulation:

Real symplectic vector space $M := L^2(\mathbb{R}) \oplus L^2(\mathbb{R})$ with 2-form

$$\omega((\mathfrak{p},\mathfrak{q}),(\widetilde{\mathfrak{p}},\widetilde{\mathfrak{q}})) := \langle (\mathfrak{q},-\mathfrak{p}),(\widetilde{\mathfrak{p}},\widetilde{\mathfrak{q}}) \rangle.$$

Given $V, F \in C^{\infty}(\mathbb{R};\mathbb{R})$, there exists $\mathcal{O}_1 \subset \mathcal{H}^1(\mathbb{R}) \oplus \mathcal{H}^1(\mathbb{R})$ such that

$$H: \mathcal{O}_1 \to \mathbb{R}, \quad (p,q) \mapsto \frac{1}{2} \int_{\mathbb{R}} \mathrm{d}x \left\{ (\partial_x p)^2 + (\partial_x q)^2 + V \cdot (p^2 + q^2) + F(p^2 + q^2) \right\},$$

is well-defined and (Fréchet) C^{∞} .

The corresponding equation of motion is the NLS equation

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{u} = \mathrm{i}\big(-\partial_x^2\mathbf{u} + \mathbf{V}\mathbf{u} + \mathbf{u}\mathbf{F}'(|\mathbf{u}|^2)\big), \quad \mathbf{u} := \mathrm{p} + \mathrm{i}\mathrm{q}.$$

16/18

Example 5.4 (NLS, continued).

Then:

Example 5.4 (NLS, continued).

Then:

 The completeness of X_H depends on the nonlinearity term and is equivalent to the global well-posedness of the NLS ([Bourgain99], [Sulem/sulem99], etc.).

Example 5.4 (NLS, continued).

Then:

- The completeness of X_H depends on the nonlinearity term and is equivalent to the global well-posedness of the NLS ([Bourgain99], [Sulem/sulem99], etc.).
- When F is arbitrary and V = Const., the function $\Phi(p,q) := \frac{1}{2} \int_{\mathbb{R}} dx \, id_{\mathbb{R}}(q^2 + p^2) \text{ satisfies the Assumption, since}$ $\{\Phi, H\} \text{ is equal to a first integral of the motion.}$

16-c/18

Example 5.4 (NLS, continued).

Then:

- The completeness of X_H depends on the nonlinearity term and is equivalent to the global well-posedness of the NLS ([Bourgain99], [Sulem/sulem99], etc.).
- When F is arbitrary and V = Const., the function $\Phi(p,q) := \frac{1}{2} \int_{\mathbb{R}} dx \, id_{\mathbb{R}}(q^2 + p^2) \text{ satisfies the Assumption, since}$ $\{\Phi, H\} \text{ is equal to a first integral of the motion.}$
- $Crit(H) \subsetneq Crit(H, \Phi)$.

In the quantum case:

• H is a selfadjoint operator in a Hilbert space \mathcal{H} ,

- H is a selfadjoint operator in a Hilbert space \mathcal{H} ,
- $\Phi \equiv (\Phi_1, \dots, \Phi_d)$ is a family of mutually commuting selfadjoint operators in \mathcal{H} satisfying a suitable version of the commutation relation $[[\Phi_j, H], H] = 0$,

- H is a selfadjoint operator in a Hilbert space \mathcal{H} ,
- $\Phi \equiv (\Phi_1, \dots, \Phi_d)$ is a family of mutually commuting selfadjoint operators in \mathcal{H} satisfying a suitable version of the commutation relation $[[\Phi_j, H], H] = 0$,
- T is a time operator for H, *i.e.* a symmetric operator satisfying the canonical commutation relation [T, H] = i.

- H is a selfadjoint operator in a Hilbert space \mathcal{H} ,
- $\Phi \equiv (\Phi_1, \dots, \Phi_d)$ is a family of mutually commuting selfadjoint operators in \mathcal{H} satisfying a suitable version of the commutation relation $[[\Phi_j, H], H] = 0$,
- T is a time operator for H, *i.e.* a symmetric operator satisfying the canonical commutation relation [T, H] = i.
- The confinement (resp. the non-periodicity) of the classical orbits $\{\phi_t(m)\}_{t\in\mathbb{R}}, m \in M$, correspond to the affiliation of the quantum orbits $\{e^{itH}\psi\}_{t\in\mathbb{R}}, \psi \in \mathcal{H}$, to the singular (resp. absolutely continuous) subspace of \mathcal{H} .

- H is a selfadjoint operator in a Hilbert space \mathcal{H} ,
- $\Phi \equiv (\Phi_1, \dots, \Phi_d)$ is a family of mutually commuting selfadjoint operators in \mathcal{H} satisfying a suitable version of the commutation relation $[[\Phi_j, H], H] = 0$,
- T is a time operator for H, *i.e.* a symmetric operator satisfying the canonical commutation relation [T, H] = i.
- The confinement (resp. the non-periodicity) of the classical orbits $\{\phi_t(m)\}_{t\in\mathbb{R}}, m \in M$, correspond to the affiliation of the quantum orbits $\{e^{itH}\psi\}_{t\in\mathbb{R}}, \psi \in \mathcal{H}$, to the singular (resp. absolutely continuous) subspace of \mathcal{H} .
- First integrals (as τ) correspond to decomposable operators.

7 Some references

• A. Pushnitski and V. Buslaev. The scattering matrix and associated formulas in hamiltonian mechanics. *Comm. Math. Phys.*, 2010.

• A. Gournay and R. Tiedra de Aldecoa. A formula relating localisation observables to the variation of energy in Hamiltonian dynamics. In preparation.

• S. Richard and R. Tiedra de Aldecoa. A new formula relating localisation operators to time operators. Submitted.

• R. Tiedra de Aldecoa. Time delay for dispersive systems in quantum scattering theory. *Rev. Math. Phys.*, 2009.