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1 Motivation

Various papers (some with C. Gérard ’07 and S. Richard ’09-10) on

quantum scattering theory put into evidence a useful formula

relating time evolution to localisation observables.

Though simple, this formula does not seem to be known in classical

mechanics... (see however [Buslaev/Pushnitski10])

This is the topic of this talk.
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Consider the symplectic manifold M := T∗Rd ≃ R2d with

coordinates (q, p), 2-form ω :=
∑

j dqj ∧ dpj and Poisson bracket

{ · , · }.
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coordinates (q, p), 2-form ω :=
∑

j dqj ∧ dpj and Poisson bracket

{ · , · }.

Let H(q, p) := h(p) be a kinetic energy Hamiltonian with
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2 Guiding example

Consider the symplectic manifold M := T∗Rd ≃ R2d with

coordinates (q, p), 2-form ω :=
∑

j dqj ∧ dpj and Poisson bracket

{ · , · }.

Let H(q, p) := h(p) be a kinetic energy Hamiltonian with

(complete) flow {ϕt}t∈R, let Φ(p, q) := q the position observable

and let χ1 the characteristic function for B1 := {x ∈ Rd | |x| ≤ 1}.

Then one has for (p, q) ∈M with (∇h)(p) 6= 0

lim
r→∞

1
2

∫∞

0

dt
[(
χ1(Φ/r)◦ϕ−t

)
(p, q)−

(
χ1(Φ/r)◦ϕt

)
(p, q)

]
= T(p, q) ,

where T(p, q) =
q · (∇h)(p)

(∇h)(p)2
∝ length × velocity

velocity2
∝ time.
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• For r > 0 fixed, the l.h.s. is equal to the difference of times

spent by the orbit {ϕt(p, q)}t∈R in the past and in the future

within Br := {x ∈ Rd | |x| ≤ r}.
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• For r > 0 fixed, the l.h.s. is equal to the difference of times

spent by the orbit {ϕt(p, q)}t∈R in the past and in the future

within Br := {x ∈ Rd | |x| ≤ r}.

• The map d

dH
:=

{
T, ·

}
is a derivation on C∞ (M), so T can be

seen as an observable “derivative with respect to the energy H”

on M, since

d

dH
(H) ≡

{
T,H

}
=

{q · (∇h)(p)

(∇h)(p)2
, h(p)

}
=

∑

j

{
qj, h(p)

} (∂jh)(p)

(∇h)(p)2
= 1.
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• For r > 0 fixed, the l.h.s. is equal to the difference of times

spent by the orbit {ϕt(p, q)}t∈R in the past and in the future

within Br := {x ∈ Rd | |x| ≤ r}.

• The map d

dH
:=

{
T, ·

}
is a derivation on C∞ (M), so T can be

seen as an observable “derivative with respect to the energy H”

on M, since

d

dH
(H) ≡

{
T,H

}
=

{q · (∇h)(p)

(∇h)(p)2
, h(p)

}
=

∑

j

{
qj, h(p)

} (∂jh)(p)

(∇h)(p)2
= 1.

The formula provides a relation between sojourn times and

variation of energy along classical orbits.
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The formula can be extended to abstract Hamiltonians H

and abstract position observables Φ on a symplectic

manifold M, if H and Φ satisfy an appropriate

“commutation” relation.
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3 Framework

• M, finite or infinite-dimensional symplectic manifold with

symplectic 2-form ω and Poisson bracket { · , · }

• H ∈ C∞ (M), Hamiltonian on M with vector field XH and

complete flow {ϕt}t∈R

• Φ ≡ (Φ1, . . . , Φd) ∈ C∞ (M; Rd), a family of observables.

Assumption:
{
{Φj, H}, H

}
= 0 for each j.
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4 Main theorem

Under the Assumption, we have:

Theorem 4.1. There exist a closed subset Crit(H,Φ) ⊂M and an

observable T ∈ C∞
(
M \ Crit(H,Φ)

)
satisfying

{
T,H

}
= 1 on

M \ Crit(H,Φ) such that

lim
r→∞

1
2

∫∞

0

dt
[(
χ1(Φ/r) ◦ϕ−t

)
(m) −

(
χ1(Φ/r) ◦ϕt

)
(m)

]
= T(m)

(Formula)

for each m ∈M \ Crit(H,Φ).
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Remark 1:

Let ∂jH := {Φj, H} for each j. Then, the vector

∇H := (∂1H, . . . , ∂dH) is an abstract velocity observable for the

pair (H,Φ), and

T =
Φ · ∇H
(∇H)2

.
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Remark 1:

Let ∂jH := {Φj, H} for each j. Then, the vector

∇H := (∂1H, . . . , ∂dH) is an abstract velocity observable for the

pair (H,Φ), and

T =
Φ · ∇H
(∇H)2

.

Due to the Assumption, we have once more

{
T,H

}
=

{Φ · ∇H
(∇H)2

, H
}

=
∑

j

{
Φj, H

} (∂jH)

(∇H)2
= 1.
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We must avoid the case “∇H = 0”, which leads to non-definiteness

of the observable T .
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Remark 2:

We must avoid the case “∇H = 0”, which leads to non-definiteness

of the observable T .

This suggests the definition:

Definition 4.2. Crit(H,Φ) := (∇H)−1({0}) ⊂M.

• Crit(H,Φ) is closed in M.

• The usual critical set Crit(H) is contained in Crit(H,Φ), i.e.

Crit(H) ≡
{
m ∈M | XH(m) = 0

}
⊂ Crit(H,Φ).

• Each orbit {ϕt(m)}t∈R either stays in Crit(H,Φ) if

m ∈ Crit(H,Φ), or stays outside Crit(H,Φ) and is not periodic

if m /∈ Crit(H,Φ).
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Remark 3 (application):

Consider a scattering pair (H,H+ V) with scattering map S.
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τ(m) is equal to the l.h.s. of (Formula) minus the same quantity

with m replaced by S(m).
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Remark 3 (application):

Consider a scattering pair (H,H+ V) with scattering map S.

The classical time delay τ(m) for the initial condition

m ∈M \ Crit(;Φ) defined in terms of the balls Br can be expressed

as follows:

τ(m) is equal to the l.h.s. of (Formula) minus the same quantity

with m replaced by S(m).

Thus

τ(m) = (T − T ◦ S)(m).

(Classical Eisenbud-Wigner Formula supporting Buslaev/Pushnitski...)

Furthermore, one can check that

τ(m) = (τ ◦ϕt)(m) for each t ∈ R,

so classical time delay is a first integral for the free motion.
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5 Examples

The framework covers many examples:

• Stark Hamiltonians,

• Homogeneous Hamiltonians,

• Kinetic Hamiltonians (we have seen them...),

• Repulsive harmonic potential,

• Simple pendulum,

• Central force systems,
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• Poincaré ball model,

• Covering manifolds,

• Wave (Klein-Gordon) equation,

• Nonlinear Schrödinger equation,

• Korteweg-de Vries equation,
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• Poincaré ball model,

• Covering manifolds,

• Wave (Klein-Gordon) equation,

• Nonlinear Schrödinger equation,

• Korteweg-de Vries equation,

• Quantum Hamiltonians defined via expectation values.
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Example 5.1 (Poincaré ball model). Put on B1 ⊂ Rn the

Riemannian metric

gq(Xq, Yq) :=
4

(1− |q|2)2
(Xq · Yq), q ∈ B1, Xq, Yq ∈ TqB1 ≃ Rn.
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Example 5.1 (Poincaré ball model). Put on B1 ⊂ Rn the

Riemannian metric

gq(Xq, Yq) :=
4

(1− |q|2)2
(Xq · Yq), q ∈ B1, Xq, Yq ∈ TqB1 ≃ Rn.

Consider on M := T∗B1 ≃
{
(q, p) ∈ B1 × Rn

}
, with symplectic

form ω :=
∑

j dqj ∧ dpj, the kinetic energy Hamiltoninan

H : M → R, (q, p) 7→ 1
2

∑

j,k

gjk(q)pjpk =
1

8
|p|2

(
1− |q|2

)2
.
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Example 5.2 (Poincaré ball model, continued).

Then:
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Example 5.2 (Poincaré ball model, continued).

Then:

• XH is complete, since the integral curves of XH correspond to

the geodesics curves of (B1, g), and (B1, g) is geodesically

complete.
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Example 5.2 (Poincaré ball model, continued).

Then:

• XH is complete, since the integral curves of XH correspond to

the geodesics curves of (B1, g), and (B1, g) is geodesically

complete.

• The observable

Φ : M → R, (q, p) 7→ e−1/H(q,p) tanh−1

(
(p · q)(1− |q|2)√
2H(q, p)(1+ |q|2)

)
.

satisfies the Assumption, since

{
{Φ,H}, H

}
=

{
e−1/H

√
2H,H

}
= 0.
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Example 5.2 (Poincaré ball model, continued).

Then:

• XH is complete, since the integral curves of XH correspond to

the geodesics curves of (B1, g), and (B1, g) is geodesically

complete.

• The observable

Φ : M → R, (q, p) 7→ e−1/H(q,p) tanh−1

(
(p · q)(1− |q|2)√
2H(q, p)(1+ |q|2)

)
.

satisfies the Assumption, since

{
{Φ,H}, H

}
=

{
e−1/H

√
2H,H

}
= 0.

• Crit(H) = Crit(H,Φ) = B1 × {0}.
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formulation:
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Example 5.3 (NLS). Follow [Kuksin93] for the Hamiltonian

formulation:

Real symplectic vector space M := L2(R) ⊕ L2(R) with 2-form

ω
(
(p, q), (p̃, q̃)

)
:=

〈
(q,−p), (p̃, q̃)

〉
.
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Example 5.3 (NLS). Follow [Kuksin93] for the Hamiltonian
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ω
(
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2
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R

dx
{
(∂xp)
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2+V·(p2+q2)+F(p2+q2)

}
,

is well-defined and (Fréchet) C∞ .



15-c/18

Example 5.3 (NLS). Follow [Kuksin93] for the Hamiltonian

formulation:

Real symplectic vector space M := L2(R) ⊕ L2(R) with 2-form

ω
(
(p, q), (p̃, q̃)

)
:=

〈
(q,−p), (p̃, q̃)

〉
.

Given V, F ∈ C∞ (R; R), there exists O1 ⊂ H1(R) ⊕H1(R) such that

H : O1 → R, (p, q) 7→ 1
2

∫

R

dx
{
(∂xp)

2+(∂xq)
2+V·(p2+q2)+F(p2+q2)

}
,

is well-defined and (Fréchet) C∞ .

The corresponding equation of motion is the NLS equation

d

dt
u = i

(
− ∂2

xu+ Vu + uF ′(|u|2)
)
, u := p+ iq.
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Example 5.4 (NLS, continued).

Then:
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Example 5.4 (NLS, continued).

Then:

• The completeness of XH depends on the nonlinearity term and

is equivalent to the global well-posedness of the NLS

([Bourgain99], [Sulem/sulem99], etc.).
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Example 5.4 (NLS, continued).

Then:

• The completeness of XH depends on the nonlinearity term and

is equivalent to the global well-posedness of the NLS

([Bourgain99], [Sulem/sulem99], etc.).

• When F is arbitrary and V = Const., the function

Φ(p, q) := 1
2

∫
R

dx idR(q2 + p2) satisfies the Assumption, since
{
Φ,H} is equal to a first integral of the motion.
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Example 5.4 (NLS, continued).

Then:

• The completeness of XH depends on the nonlinearity term and

is equivalent to the global well-posedness of the NLS

([Bourgain99], [Sulem/sulem99], etc.).

• When F is arbitrary and V = Const., the function

Φ(p, q) := 1
2

∫
R

dx idR(q2 + p2) satisfies the Assumption, since
{
Φ,H} is equal to a first integral of the motion.

• Crit(H) ( Crit(H,Φ).
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6 From classical to quantum

In the quantum case:

• H is a selfadjoint operator in a Hilbert space H,

• Φ ≡ (Φ1, . . . , Φd) is a family of mutually commuting

selfadjoint operators in H satisfying a suitable version of the

commutation relation
[
[Φj, H], H

]
= 0,

• T is a time operator for H, i.e. a symmetric operator satisfying

the canonical commutation relation [T,H] = i.

• The confinement (resp. the non-periodicity) of the classical

orbits {ϕt(m)}t∈R, m ∈M, correspond to the affiliation of the

quantum orbits {eitHψ}t∈R, ψ ∈ H, to the singular (resp.

absolutely continuous) subspace of H.

• First integrals (as τ) correspond to decomposable operators.
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