A formula relating localisation observables to the variation of energy in Hamiltonian dynamics

Rafael Tiedra
(Pontificia Universidad Católica de Chile)

Pucón, December 2010

Joint work with Antoine Gournay (Neuchâtel)

1 Motivation

1 Motivation

Various papers (some with C. Gérard ' 07 and S . Richard ' $09-10$) on quantum scattering theory put into evidence a useful formula relating time evolution to localisation observables.

1 Motivation

Various papers (some with C. Gérard ' 07 and S. Richard '09-10) on quantum scattering theory put into evidence a useful formula relating time evolution to localisation observables.

Though simple, this formula does not seem to be known in classical mechanics... (see however [Buslaev/Pushnitski 10])

1 Motivation

Various papers (some with C. Gérard ' 07 and S. Richard '09-10) on quantum scattering theory put into evidence a useful formula relating time evolution to localisation observables.

Though simple, this formula does not seem to be known in classical mechanics... (see however [Buslaev/Pushnitski 10])

This is the topic of this talk.

2 Guiding example

2 Guiding example

Consider the symplectic manifold $M:=\mathrm{T}^{*} \mathbb{R}^{\mathrm{d}} \simeq \mathbb{R}^{2 \mathrm{~d}}$ with coordinates (q, \mathfrak{p}), 2-form $\omega:=\sum_{j} d q^{j} \wedge d p_{j}$ and Poisson bracket $\{\cdot, \cdot\}$.

2 Guiding example

Consider the symplectic manifold $M:=T^{*} \mathbb{R}^{\mathrm{d}} \simeq \mathbb{R}^{2 \mathrm{~d}}$ with coordinates (\mathbf{q}, \mathfrak{p}), 2-form $\omega:=\sum_{j} \mathrm{dq}^{j} \wedge \mathrm{dp}_{\mathrm{j}}$ and Poisson bracket $\{\cdot, \cdot\}$.

Let $\mathrm{H}(\mathrm{q}, \mathrm{p}):=\mathrm{h}(\mathrm{p})$ be a kinetic energy Hamiltonian with (complete) flow $\left\{\varphi_{\mathrm{t}}\right\}_{\mathrm{t} \in \mathbb{R}}$, let $\Phi(\mathrm{p}, \mathrm{q}):=\mathrm{q}$ the position observable and let χ_{1} the characteristic function for $B_{1}:=\left\{x \in \mathbb{R}^{d}| | x \mid \leq 1\right\}$.

2 Guiding example

Consider the symplectic manifold $M:=\mathrm{T}^{*} \mathbb{R}^{\mathrm{d}} \simeq \mathbb{R}^{2 \mathrm{~d}}$ with coordinates (q, p), 2-form $\omega:=\sum_{j} d q^{j} \wedge d p_{j}$ and Poisson bracket $\{\cdot, \cdot\}$.

Let $\mathrm{H}(\mathrm{q}, \mathrm{p}):=\mathrm{h}(\mathrm{p})$ be a kinetic energy Hamiltonian with (complete) flow $\left\{\varphi_{\mathrm{t}}\right\}_{\mathrm{t} \in \mathbb{R}}$, let $\Phi(\mathrm{p}, \mathrm{q}):=\mathrm{q}$ the position observable and let χ_{1} the characteristic function for $B_{1}:=\left\{x \in \mathbb{R}^{d}| | x \mid \leq 1\right\}$.

Then one has for $(\mathfrak{p}, \mathrm{q}) \in M$ with $(\nabla h)(\mathfrak{p}) \neq 0$
$\lim _{r \rightarrow \infty} \frac{1}{2} \int_{0}^{\infty} d t\left[\left(x_{1}(\Phi / r) \circ \varphi_{-t}\right)(p, q)-\left(\chi_{1}(\Phi / r) \circ \varphi_{t}\right)(p, q)\right]=T(p, q)$,
where $T(p, q)=\frac{q \cdot(\nabla h)(p)}{(\nabla h)(p)^{2}}$

2 Guiding example

Consider the symplectic manifold $M:=T^{*} \mathbb{R}^{\mathrm{d}} \simeq \mathbb{R}^{2 \mathrm{~d}}$ with coordinates (\mathbf{q}, \mathfrak{p}), 2-form $\omega:=\sum_{j} \mathrm{dq}^{j} \wedge \mathrm{dp}_{\mathrm{j}}$ and Poisson bracket $\{\cdot, \cdot\}$.
Let $\mathrm{H}(\mathrm{q}, \mathrm{p}):=\mathrm{h}(\mathrm{p})$ be a kinetic energy Hamiltonian with (complete) flow $\left\{\varphi_{\mathrm{t}}\right\}_{\mathrm{t} \in \mathbb{R}}$, let $\Phi(\mathrm{p}, \mathrm{q}):=\mathrm{q}$ the position observable and let χ_{1} the characteristic function for $B_{1}:=\left\{x \in \mathbb{R}^{d}| | x \mid \leq 1\right\}$.

Then one has for $(\mathfrak{p}, \mathrm{q}) \in M$ with $(\nabla h)(p) \neq 0$
$\lim _{r \rightarrow \infty} \frac{1}{2} \int_{0}^{\infty} d t\left[\left(\chi_{1}(\Phi / r) \circ \varphi_{-t}\right)(p, q)-\left(\chi_{1}(\Phi / r) \circ \varphi_{t}\right)(p, q)\right]=T(p, q)$,
where $T(p, q)=\frac{q \cdot(\nabla h)(p)}{(\nabla h)(p)^{2}} \propto \frac{\text { length } \times \text { velocity }}{\text { velocity }^{2}} \propto$ time.

- For $\mathrm{r}>0$ fixed, the l.h.s. is equal to the difference of times spent by the orbit $\left\{\varphi_{\mathrm{t}}(\mathfrak{p}, \mathrm{q})\right\}_{\mathrm{t} \in \mathbb{R}}$ in the past and in the future within $B_{r}:=\left\{x \in \mathbb{R}^{\mathrm{d}}| | x \mid \leq r\right\}$.
- For $\mathrm{r}>0$ fixed, the l.h.s. is equal to the difference of times spent by the orbit $\left\{\varphi_{\mathrm{t}}(\mathfrak{p}, \mathfrak{q})\right\}_{\mathrm{t} \in \mathbb{R}}$ in the past and in the future within $B_{r}:=\left\{x \in \mathbb{R}^{d}| | x \mid \leq r\right\}$.
- The map $\frac{d}{d H}:=\{T, \cdot\}$ is a derivation on $C^{\infty}(M)$, so T can be seen as an observable "derivative with respect to the energy H " on M, since

$$
\frac{\mathrm{d}}{\mathrm{dH}}(\mathrm{H}) \equiv\{\mathrm{T}, \mathrm{H}\}=\left\{\frac{\mathrm{q} \cdot(\nabla \mathrm{~h})(\mathfrak{p})}{(\nabla \mathrm{h})(\mathfrak{p})^{2}}, \mathrm{~h}(\mathfrak{p})\right\}=\sum_{j}\left\{\mathrm{q}_{j}, \mathrm{~h}(\mathfrak{p})\right\} \frac{\left(\partial_{j} h\right)(\mathfrak{p})}{(\nabla \mathrm{h})(\mathfrak{p})^{2}}=1 .
$$

- For $\mathrm{r}>0$ fixed, the l.h.s. is equal to the difference of times spent by the orbit $\left\{\varphi_{t}(\mathfrak{p}, q)\right\}_{t \in \mathbb{R}}$ in the past and in the future within $B_{r}:=\left\{x \in \mathbb{R}^{\boldsymbol{d}}| | x \mid \leq r\right\}$.
- The map $\frac{d}{d H}:=\{T, \cdot\}$ is a derivation on $C^{\infty}(M)$, so T can be seen as an observable "derivative with respect to the energy H " on M, since

$$
\frac{\mathrm{d}}{\mathrm{dH}}(\mathrm{H}) \equiv\{\mathrm{T}, \mathrm{H}\}=\left\{\frac{\mathrm{q} \cdot(\nabla \mathrm{~h})(\mathfrak{p})}{(\nabla \mathrm{h})(\mathfrak{p})^{2}}, \mathrm{~h}(\mathfrak{p})\right\}=\sum_{j}\left\{\mathrm{q}_{\mathfrak{j}}, \mathrm{h}(\mathfrak{p})\right\} \frac{\left(\partial_{j} h\right)(\mathfrak{p})}{(\nabla \mathrm{h})(\mathfrak{p})^{2}}=1 .
$$

The formula provides a relation between sojourn times and variation of energy along classical orbits.

The formula can be extended to abstract Hamiltonians H and abstract position observables Φ on a symplectic manifold M, if H and Φ satisfy an appropriate "commutation" relation.

3 Framework

3 Framework

- M, finite or infinite-dimensional symplectic manifold with symplectic 2 -form ω and Poisson bracket $\{\cdot, \cdot\}$

3 Framework

- M, finite or infinite-dimensional symplectic manifold with symplectic 2 -form ω and Poisson bracket $\{\cdot, \cdot\}$
- $H \in C^{\infty}(M)$, Hamiltonian on M with vector field X_{H} and complete flow $\left\{\varphi_{t}\right\}_{t \in \mathbb{R}}$

3 Framework

- M, finite or infinite-dimensional symplectic manifold with symplectic 2 -form ω and Poisson bracket $\{\cdot, \cdot\}$
- $H \in C^{\infty}(M)$, Hamiltonian on M with vector field X_{H} and complete flow $\left\{\varphi_{t}\right\}_{t \in \mathbb{R}}$
- $\Phi \equiv\left(\Phi_{1}, \ldots, \Phi_{\mathrm{d}}\right) \in \mathrm{C}^{\infty}\left(\mathrm{M} ; \mathbb{R}^{\mathrm{d}}\right)$, a family of observables.

3 Framework

- M, finite or infinite-dimensional symplectic manifold with symplectic 2 -form ω and Poisson bracket $\{\cdot, \cdot\}$
- $H \in C^{\infty}(M)$, Hamiltonian on M with vector field X_{H} and complete flow $\left\{\varphi_{\mathrm{t}}\right\}_{\mathrm{t} \in \mathbb{R}}$
- $\Phi \equiv\left(\Phi_{1}, \ldots, \Phi_{\mathfrak{d}}\right) \in \mathrm{C}^{\infty}\left(\mathrm{M} ; \mathbb{R}^{\mathrm{d}}\right)$, a family of observables.

Assumption:
$\left\{\left\{\Phi_{\mathfrak{j}}, \mathrm{H}\right\}, \mathrm{H}\right\}=0$ for each \mathfrak{j}.

4 Main theorem

Under the Assumption, we have:
Theorem 4.1. There exist a closed subset $\operatorname{Crit}(\mathrm{H}, \Phi) \subset M$ and an observable $\mathrm{T} \in \mathrm{C}^{\infty}(\mathrm{M} \backslash \operatorname{Crit}(\mathrm{H}, \Phi))$ satisfying $\{\mathrm{T}, \mathrm{H}\}=1$ on $M \backslash \operatorname{Crit}(\mathrm{H}, \Phi)$ such that

$$
\lim _{r \rightarrow \infty} \frac{1}{2} \int_{0}^{\infty} d t\left[\left(\chi_{1}(\Phi / r) \circ \varphi_{-t}\right)(\mathfrak{m})-\left(\chi_{1}(\Phi / r) \circ \varphi_{t}\right)(\mathfrak{m})\right]=T(\mathfrak{m})
$$

(Formula)
for each $\mathrm{m} \in \mathrm{M} \backslash \operatorname{Crit}(\mathrm{H}, \Phi)$.

Remark 1:

Let $\partial_{\mathfrak{j}} \mathrm{H}:=\left\{\Phi_{\mathfrak{j}}, \boldsymbol{H}\right\}$ for each \mathfrak{j}. Then, the vector
$\nabla \mathrm{H}:=\left(\partial_{1} \mathrm{H}, \ldots, \partial_{\mathrm{d}} \mathrm{H}\right)$ is an abstract velocity observable for the pair (H, Φ), and

$$
\mathrm{T}=\frac{\Phi \cdot \nabla \mathrm{H}}{(\nabla \mathrm{H})^{2}} .
$$

Remark 1:

Let $\partial_{\mathfrak{j}} \mathrm{H}:=\left\{\Phi_{\mathfrak{j}}, \mathrm{H}\right\}$ for each \mathfrak{j}. Then, the vector
$\nabla \mathrm{H}:=\left(\partial_{1} \mathrm{H}, \ldots, \partial_{\mathrm{d}} \mathrm{H}\right)$ is an abstract velocity observable for the pair (H, Φ), and

$$
\mathrm{T}=\frac{\Phi \cdot \nabla \mathrm{H}}{(\nabla \mathrm{H})^{2}} .
$$

Due to the Assumption, we have once more

$$
\{\mathrm{T}, \mathrm{H}\}=\left\{\frac{\Phi \cdot \nabla \mathrm{H}}{(\nabla \mathrm{H})^{2}}, \mathrm{H}\right\}=\sum_{\mathrm{j}}\left\{\Phi_{j}, \mathrm{H}\right\} \frac{\left(\partial_{j} \mathrm{H}\right)}{(\nabla \mathrm{H})^{2}}=1 .
$$

Remark 2:

We must avoid the case " $\nabla \mathrm{H}=0$ ", which leads to non-definiteness of the observable T .

Remark 2:

We must avoid the case " $\nabla \mathrm{H}=0$ ", which leads to non-definiteness of the observable T.

This suggests the definition:
Definition 4.2. $\operatorname{Crit}(H, \Phi):=(\nabla H)^{-1}(\{0\}) \subset M$.

Remark 2:

We must avoid the case " $\nabla \mathrm{H}=0$ ", which leads to non-definiteness of the observable T .

This suggests the definition:
Definition 4.2. $\operatorname{Crit}(H, \Phi):=(\nabla H)^{-1}(\{0\}) \subset M$.

- $\operatorname{Crit}(H, \Phi)$ is closed in M.

Remark 2:

We must avoid the case " $\nabla \mathrm{H}=0$ ", which leads to non-definiteness of the observable T.

This suggests the definition:
Definition 4.2. $\operatorname{Crit}(H, \Phi):=(\nabla H)^{-1}(\{0\}) \subset M$.

- $\operatorname{Crit}(\mathrm{H}, \Phi)$ is closed in M.
- The usual critical set $\operatorname{Crit}(\mathrm{H})$ is contained in $\operatorname{Crit}(\mathrm{H}, \Phi)$, i.e.

$$
\operatorname{Crit}(\mathrm{H}) \equiv\left\{\mathfrak{m} \in M \mid X_{H}(\mathfrak{m})=0\right\} \subset \operatorname{Crit}(H, \Phi) .
$$

Remark 2:

We must avoid the case " $\nabla \mathrm{H}=0$ ", which leads to non-definiteness of the observable T.

This suggests the definition:
Definition 4.2. $\operatorname{Crit}(H, \Phi):=(\nabla H)^{-1}(\{0\}) \subset M$.

- $\operatorname{Crit}(\mathrm{H}, \Phi)$ is closed in M .
- The usual critical set $\operatorname{Crit}(\mathrm{H})$ is contained in $\operatorname{Crit}(\mathrm{H}, \Phi)$, i.e.

$$
\operatorname{Crit}(\mathrm{H}) \equiv\left\{\mathrm{m} \in M \mid \mathrm{X}_{\mathrm{H}}(\mathfrak{m})=0\right\} \subset \operatorname{Crit}(\mathrm{H}, \Phi) .
$$

- Each orbit $\left\{\varphi_{\mathfrak{t}}(\mathfrak{m})\right\}_{t \in \mathbb{R}}$ either stays in $\operatorname{Crit}(\mathrm{H}, \Phi)$ if $\mathrm{m} \in \operatorname{Crit}(\mathrm{H}, \Phi)$, or stays outside $\operatorname{Crit}(\mathrm{H}, \Phi)$ and is not periodic if $m \notin \operatorname{Crit}(\mathrm{H}, \Phi)$.

Remark 3 (application):

Consider a scattering pair ($\mathrm{H}, \mathrm{H}+\mathrm{V}$) with scattering map S .

Remark 3 (application):

Consider a scattering pair ($\mathrm{H}, \mathrm{H}+\mathrm{V}$) with scattering map S .
The classical time delay $\tau(\mathfrak{m})$ for the initial condition $m \in M \backslash \operatorname{Crit}(; \Phi)$ defined in terms of the balls B_{r} can be expressed as follows:
$\tau(\mathfrak{m})$ is equal to the l.h.s. of (Formula) minus the same quantity with \mathfrak{m} replaced by $S(\mathfrak{m})$.

Remark 3 (application):

Consider a scattering pair ($\mathrm{H}, \mathrm{H}+\mathrm{V}$) with scattering map S .
The classical time delay $\tau(\mathfrak{m})$ for the initial condition $m \in M \backslash \operatorname{Crit}(; \Phi)$ defined in terms of the balls B_{r} can be expressed as follows:
$\tau(m)$ is equal to the l.h.s. of (Formula) minus the same quantity with m replaced by $S(m)$.

Thus

$$
\tau(\mathfrak{m})=(T-T \circ S)(\mathfrak{m}) .
$$

Remark 3 (application):

Consider a scattering pair ($\mathrm{H}, \mathrm{H}+\mathrm{V}$) with scattering map S .
The classical time delay $\tau(\mathfrak{m})$ for the initial condition $m \in M \backslash$ Crit $(; \Phi)$ defined in terms of the balls B_{r} can be expressed as follows:
$\tau(m)$ is equal to the l.h.s. of (Formula) minus the same quantity with \mathfrak{m} replaced by $S(\mathfrak{m})$.

Thus

$$
\tau(\mathfrak{m})=(T-T \circ S)(\mathfrak{m}) .
$$

(Classical Eisenbud-Wigner Formula supporting Buslaev/Pushnitski...)

Remark 3 (application):

Consider a scattering pair ($\mathrm{H}, \mathrm{H}+\mathrm{V}$) with scattering map S .
The classical time delay $\tau(\mathfrak{m})$ for the initial condition
$m \in M \backslash \operatorname{Crit}(; \Phi)$ defined in terms of the balls B_{r} can be expressed as follows:
$\tau(\mathfrak{m})$ is equal to the l.h.s. of (Formula) minus the same quantity with \mathfrak{m} replaced by $S(\mathfrak{m})$.

Thus

$$
\tau(\mathfrak{m})=(T-T \circ S)(\mathfrak{m}) .
$$

(Classical Eisenbud-Wigner Formula supporting Buslaev/Pushnitski...)
Furthermore, one can check that

$$
\tau(\mathfrak{m})=\left(\tau \circ \varphi_{t}\right)(\mathfrak{m}) \text { for each } t \in \mathbb{R},
$$

so classical time delay is a first integral for the free motion.

5 Examples

The framework covers many examples:

5 Examples

The framework covers many examples:

- Stark Hamiltonians,

5 Examples

The framework covers many examples:

- Stark Hamiltonians,
- Homogeneous Hamiltonians,

5 Examples

The framework covers many examples:

- Stark Hamiltonians,
- Homogeneous Hamiltonians,
- Kinetic Hamiltonians (we have seen them...),

5 Examples

The framework covers many examples:

- Stark Hamiltonians,
- Homogeneous Hamiltonians,
- Kinetic Hamiltonians (we have seen them...),
- Repulsive harmonic potential,

5 Examples

The framework covers many examples:

- Stark Hamiltonians,
- Homogeneous Hamiltonians,
- Kinetic Hamiltonians (we have seen them...),
- Repulsive harmonic potential,
- Simple pendulum,

5 Examples

The framework covers many examples:

- Stark Hamiltonians,
- Homogeneous Hamiltonians,
- Kinetic Hamiltonians (we have seen them...),
- Repulsive harmonic potential,
- Simple pendulum,
- Central force systems,
- Poincaré ball model,
- Poincaré ball model,
- Covering manifolds,
- Poincaré ball model,
- Covering manifolds,
- Wave (Klein-Gordon) equation,
- Poincaré ball model,
- Covering manifolds,
- Wave (Klein-Gordon) equation,
- Nonlinear Schrödinger equation,
- Poincaré ball model,
- Covering manifolds,
- Wave (Klein-Gordon) equation,
- Nonlinear Schrödinger equation,
- Korteweg-de Vries equation,
- Poincaré ball model,
- Covering manifolds,
- Wave (Klein-Gordon) equation,
- Nonlinear Schrödinger equation,
- Korteweg-de Vries equation,
- Quantum Hamiltonians defined via expectation values.

Example 5.1 (Poincaré ball model). Put on $\mathrm{B}_{1} \subset \mathbb{R}^{n}$ the
Riemannian metric

$$
g_{q}\left(X_{q}, Y_{q}\right):=\frac{4}{\left(1-|q|^{2}\right)^{2}}\left(X_{q} \cdot Y_{q}\right), \quad q \in B_{1}, X_{q}, Y_{q} \in T_{q} B_{1} \simeq \mathbb{R}^{n} .
$$

Example 5.1 (Poincaré ball model). Put on $\mathrm{B}_{1} \subset \mathbb{R}^{n}$ the Riemannian metric
$g_{q}\left(X_{q}, Y_{q}\right):=\frac{4}{\left(1-|q|^{2}\right)^{2}}\left(X_{q} \cdot Y_{q}\right), \quad q \in B_{1}, X_{q}, Y_{q} \in T_{q} B_{1} \simeq \mathbb{R}^{n}$.
Consider on $\mathrm{M}:=\mathrm{T}^{*} \mathrm{~B}_{1} \simeq\left\{(\mathrm{q}, \mathrm{p}) \in \mathrm{B}_{1} \times \mathbb{R}^{\mathrm{n}}\right\}$, with symplectic form $\omega:=\sum_{j} \mathrm{dq}^{j} \wedge \mathrm{dp}_{\mathfrak{j}}$, the kinetic energy Hamiltoninan

$$
H: M \rightarrow \mathbb{R}, \quad(q, p) \mapsto \frac{1}{2} \sum_{j, k} g^{j k}(q) \mathfrak{p}_{j} p_{k}=\frac{1}{8}|\mathfrak{p}|^{2}\left(1-|q|^{2}\right)^{2} .
$$

Example 5.2 (Poincaré ball model, continued).
Then:

Example 5.2 (Poincaré ball model, continued).

Then:

- X_{H} is complete, since the integral curves of X_{H} correspond to the geodesics curves of $\left(\mathrm{B}_{1}, \mathrm{~g}\right)$, and $\left(\mathrm{B}_{1}, \mathrm{~g}\right)$ is geodesically complete.

Example 5.2 (Poincaré ball model, continued).

Then:

- X_{H} is complete, since the integral curves of X_{H} correspond to the geodesics curves of $\left(\mathrm{B}_{1}, \mathrm{~g}\right)$, and $\left(\mathrm{B}_{1}, \mathrm{~g}\right)$ is geodesically complete.
- The observable

$$
\Phi: M \rightarrow \mathbb{R}, \quad(q, p) \mapsto e^{-1 / H(q, p)} \tanh ^{-1}\left(\frac{(p \cdot q)\left(1-|q|^{2}\right)}{\sqrt{2 H(q, p)}\left(1+|q|^{2}\right)}\right)
$$

satisfies the Assumption, since

$$
\{\{\Phi, H\}, H\}=\left\{\mathrm{e}^{-1 / \mathrm{H}} \sqrt{2 \mathrm{H}}, \mathrm{H}\right\}=0
$$

Example 5.2 (Poincaré ball model, continued).

Then:

- X_{H} is complete, since the integral curves of X_{H} correspond to the geodesics curves of $\left(\mathrm{B}_{1}, \mathrm{~g}\right)$, and $\left(\mathrm{B}_{1}, \mathrm{~g}\right)$ is geodesically complete.
- The observable

$$
\Phi: M \rightarrow \mathbb{R}, \quad(\mathrm{q}, \mathrm{p}) \mapsto \mathrm{e}^{-1 / \mathrm{H}(\mathrm{q}, \mathfrak{p})} \tanh ^{-1}\left(\frac{(\mathrm{p} \cdot \mathrm{q})\left(1-|\mathrm{q}|^{2}\right)}{\sqrt{2 \mathrm{H}(\mathrm{q}, \mathrm{p})}\left(1+|\mathrm{q}|^{2}\right)}\right) .
$$

satisfies the Assumption, since

$$
\{\{\Phi, H\}, H\}=\left\{e^{-1 / H} \sqrt{2 H}, H\right\}=0 .
$$

- $\operatorname{Crit}(H)=\operatorname{Crit}(H, \Phi)=B_{1} \times\{0\}$.

Example 5.3 (NLS). Follow [Kuksin93] for the Hamiltonian formulation:

Example 5.3 (NLS). Follow [Kuksin93] for the Hamiltonian formulation:
Real symplectic vector space $M:=L^{2}(\mathbb{R}) \oplus L^{2}(\mathbb{R})$ with 2 -form

$$
\omega((\mathfrak{p}, \mathfrak{q}),(\widetilde{\mathfrak{p}}, \widetilde{\mathfrak{q}})):=\langle(\mathfrak{q},-\mathfrak{p}),(\widetilde{\mathfrak{p}}, \widetilde{\mathfrak{q}})\rangle .
$$

Example 5.3 (NLS). Follow [Kuksin93] for the Hamiltonian formulation:
Real symplectic vector space $M:=L^{2}(\mathbb{R}) \oplus L^{2}(\mathbb{R})$ with 2 -form

$$
\omega((\mathfrak{p}, \mathfrak{q}),(\widetilde{\mathfrak{p}}, \widetilde{\mathfrak{q}})):=\langle(\mathfrak{q},-\mathfrak{p}),(\widetilde{\mathfrak{p}}, \widetilde{\mathfrak{q}})\rangle .
$$

Given $\mathrm{V}, \mathrm{F} \in \mathrm{C}^{\infty}(\mathbb{R} ; \mathbb{R})$, there exists $\mathcal{O}_{1} \subset \mathcal{H}^{1}(\mathbb{R}) \oplus \mathcal{H}^{1}(\mathbb{R})$ such that
$\mathrm{H}: \mathcal{O}_{1} \rightarrow \mathbb{R}, \quad(\mathrm{p}, \mathrm{q}) \mapsto \frac{1}{2} \int_{\mathbb{R}} \mathrm{d} x\left\{\left(\partial_{\chi} \mathfrak{p}\right)^{2}+\left(\partial_{x} \mathfrak{q}\right)^{2}+\mathrm{V} \cdot\left(\mathrm{p}^{2}+\mathrm{q}^{2}\right)+\mathrm{F}\left(\mathrm{p}^{2}+\mathrm{q}^{2}\right)\right\}$, is well-defined and (Fréchet) C^{∞}.

Example 5.3 (NLS). Follow [Kuksin93] for the Hamiltonian formulation:
Real symplectic vector space $M:=L^{2}(\mathbb{R}) \oplus L^{2}(\mathbb{R})$ with 2 -form

$$
\omega((\mathfrak{p}, \mathfrak{q}),(\widetilde{\mathfrak{p}}, \widetilde{\mathfrak{q}})):=\langle(\mathfrak{q},-\mathfrak{p}),(\widetilde{\mathfrak{p}}, \widetilde{\mathfrak{q}})\rangle .
$$

Given $\mathrm{V}, \mathrm{F} \in \mathrm{C}^{\infty}(\mathbb{R} ; \mathbb{R})$, there exists $\mathcal{O}_{1} \subset \mathcal{H}^{1}(\mathbb{R}) \oplus \mathcal{H}^{1}(\mathbb{R})$ such that
$\mathrm{H}: \mathcal{O}_{1} \rightarrow \mathbb{R}, \quad(\mathrm{p}, \mathrm{q}) \mapsto \frac{1}{2} \int_{\mathbb{R}} \mathrm{d} x\left\{\left(\partial_{x} \mathfrak{p}\right)^{2}+\left(\partial_{x} \mathrm{q}\right)^{2}+\mathrm{V} \cdot\left(\mathrm{p}^{2}+\mathrm{q}^{2}\right)+\mathrm{F}\left(\mathrm{p}^{2}+\mathrm{q}^{2}\right)\right\}$, is well-defined and (Fréchet) C^{∞}.

The corresponding equation of motion is the NLS equation

$$
\frac{d}{d t} u=\mathfrak{i}\left(-\partial_{x}^{2} u+v u+u F^{\prime}\left(|u|^{2}\right)\right), \quad u:=p+i q
$$

Example 5.4 (NLS, continued).

Then:

Example 5.4 (NLS, continued).
Then:

- The completeness of X_{H} depends on the nonlinearity term and is equivalent to the global well-posedness of the NLS ([Bourgain99], [Sulem/sulem99], etc.).

Example 5.4 (NLS, continued).
Then:

- The completeness of X_{H} depends on the nonlinearity term and is equivalent to the global well-posedness of the NLS ([Bourgain99], [Sulem/sulem99], etc.).
- When F is arbitrary and $\mathrm{V}=$ Const., the function $\Phi(p, q):=\frac{1}{2} \int_{\mathbb{R}} \mathrm{dx} \mathrm{id}_{\mathbb{R}}\left(\mathrm{q}^{2}+\mathrm{p}^{2}\right)$ satisfies the Assumption, since $\{\Phi, \mathrm{H}\}$ is equal to a first integral of the motion.

Example 5.4 (NLS, continued).
Then:

- The completeness of X_{H} depends on the nonlinearity term and is equivalent to the global well-posedness of the NLS ([Bourgain99], [Sulem/sulem99], etc.).
- When F is arbitrary and $\mathrm{V}=$ Const., the function $\Phi(p, q):=\frac{1}{2} \int_{\mathbb{R}} \mathrm{dx} \mathrm{id}_{\mathbb{R}}\left(\mathrm{q}^{2}+\mathrm{p}^{2}\right)$ satisfies the Assumption, since $\{\Phi, \mathrm{H}\}$ is equal to a first integral of the motion.
- $\operatorname{Crit}(H) \subsetneq \operatorname{Crit}(H, \Phi)$.

6 From classical to quantum

6 From classical to quantum

In the quantum case:

- H is a selfadjoint operator in a Hilbert space \mathcal{H},

6 From classical to quantum

In the quantum case:

- H is a selfadjoint operator in a Hilbert space \mathcal{H},
- $\Phi \equiv\left(\Phi_{1}, \ldots, \Phi_{\mathrm{d}}\right)$ is a family of mutually commuting selfadjoint operators in \mathcal{H} satisfying a suitable version of the commutation relation $\left[\left[\Phi_{\mathfrak{j}}, \mathrm{H}\right], \mathrm{H}\right]=0$,

6 From classical to quantum

In the quantum case:

- H is a selfadjoint operator in a Hilbert space \mathcal{H},
- $\Phi \equiv\left(\Phi_{1}, \ldots, \Phi_{\mathrm{d}}\right)$ is a family of mutually commuting selfadjoint operators in \mathcal{H} satisfying a suitable version of the commutation relation $\left[\left[\Phi_{\mathfrak{j}}, \mathrm{H}\right], \mathrm{H}\right]=0$,
- T is a time operator for H , i.e. a symmetric operator satisfying the canonical commutation relation $[\mathrm{T}, \mathrm{H}]=\mathrm{i}$.

6 From classical to quantum

In the quantum case:

- H is a selfadjoint operator in a Hilbert space \mathcal{H},
- $\Phi \equiv\left(\Phi_{1}, \ldots, \Phi_{\mathrm{d}}\right)$ is a family of mutually commuting selfadjoint operators in \mathcal{H} satisfying a suitable version of the commutation relation $\left[\left[\Phi_{\mathfrak{j}}, \mathrm{H}\right], \mathrm{H}\right]=0$,
- T is a time operator for H , i.e. a symmetric operator satisfying the canonical commutation relation $[\mathrm{T}, \mathrm{H}]=\mathrm{i}$.
- The confinement (resp. the non-periodicity) of the classical orbits $\left\{\varphi_{\mathrm{t}}(\mathrm{m})\right\}_{\mathrm{t} \in \mathbb{R}}, \mathrm{m} \in M$, correspond to the affiliation of the quantum orbits $\left\{\mathrm{e}^{\mathrm{itH}} \psi\right\}_{\mathrm{t} \in \mathbb{R}}, \psi \in \mathcal{H}$, to the singular (resp. absolutely continuous) subspace of \mathcal{H}.

6 From classical to quantum

In the quantum case:

- H is a selfadjoint operator in a Hilbert space \mathcal{H},
- $\Phi \equiv\left(\Phi_{1}, \ldots, \Phi_{\mathrm{d}}\right)$ is a family of mutually commuting selfadjoint operators in \mathcal{H} satisfying a suitable version of the commutation relation $\left[\left[\Phi_{\mathfrak{j}}, \mathrm{H}\right], \mathrm{H}\right]=0$,
- T is a time operator for H , i.e. a symmetric operator satisfying the canonical commutation relation $[\mathrm{T}, \mathrm{H}]=\mathrm{i}$.
- The confinement (resp. the non-periodicity) of the classical orbits $\left\{\varphi_{\mathrm{t}}(\mathrm{m})\right\}_{\mathrm{t} \in \mathbb{R}}, \mathrm{m} \in M$, correspond to the affiliation of the quantum orbits $\left\{\mathrm{e}^{\mathrm{itH}} \psi\right\}_{\mathrm{t} \in \mathbb{R}}, \psi \in \mathcal{H}$, to the singular (resp. absolutely continuous) subspace of \mathcal{H}.
- First integrals (as τ) correspond to decomposable operators.

7 Some references

- A. Pushnitski and V. Buslaev. The scattering matrix and associated formulas in hamiltonian mechanics. Comm. Math. Phys., 2010.
- A. Gournay and R. Tiedra de Aldecoa. A formula relating localisation observables to the variation of energy in Hamiltonian dynamics. In preparation.
- S. Richard and R. Tiedra de Aldecoa. A new formula relating localisation operators to time operators. Submitted.
- R. Tiedra de Aldecoa. Time delay for dispersive systems in quantum scattering theory. Rev. Math. Phys., 2009.

