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1 Motivation

Various papers (some with C. Gérard '07 and S. Richard ’09-10) on
quantum scattering theory put into evidence a useful formula

relating time evolution to localisation observables.

Though simple, this formula does not seem to be known in classical

mechanics... (see however [Buslaev/Pushnitski10])

This is the topic of this talk.
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2 Guiding example

Consider the symplectic manifold M := T*R¢ ~ R?4 with
coordinates (q,p), 2-form w = )_ ; dq’ A dp; and Poisson bracket
{. - }

Let H(q,p) := h(p) be a kinetic energy Hamiltonian with

(complete) flow {@¢}ier, let @(p, q) := q the position observable
and let x; the characteristic function for By :={x € R¢ | |x| < 11.

Then one has for (p,q) € M with (Vh)(p) #0

oo

lim %J dt [(x1(®/r)o@_+)(p,q)—(x1(D/T)ow)(p,q)] =T(p,q),

T— 00 O

q-(Vh)(p) N length x velocity
(Vh)(p)?2 velocity?

where T(p, q) = x time.
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e For r > 0 fixed, the l.h.s. is equal to the difference of times
spent by the orbit {@+(p, q)}ter in the past and in the future
within B, :={x € R4 | [x| < r}.



4-a/18

e For r > 0 fixed, the l.h.s. is equal to the difference of times
spent by the orbit {@+(p, q)}ter in the past and in the future
within B, :={x € R4 | [x| < r}.

e The map diH = {T, } is a derivation on C*® (M), so T can be
seen as an observable “derivative with respect to the energy H”
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e For r > 0 fixed, the l.h.s. is equal to the difference of times
spent by the orbit {@+(p, q) }ter in the past and in the future
within B, :={x € R4 | |x| < rl.

e The map diH = {T, } is a derivation on C*® (M), so T can be
seen as an observable “derivative with respect to the energy H”
on M, since

) = iy = {40 ) {qj,h(p)}((ajm(p)z g
)

dH (Vh)(p)? Vh)(p)

The formula provides a relation between sojourn times and
variation of energy along classical orbits.
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The formula can be extended to abstract Hamiltonians H
and abstract position observables ® on a symplectic
manifold M, if H and @ satisfy an appropriate
“commutation” relation.
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3 Framework

e M, finite or infinite-dimensional symplectic manifold with

symplectic 2-form w and Poisson bracket {-, -}

e He C* (M), Hamiltonian on M with vector field Xy and

complete flow { @+ Jter

o O =(Dq,...,04) € C®(M;R9Y), a family of observables.

Assumption:

{{CDj  H}, H} — 0 for each j.
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4 Main theorem

Under the Assumption, we have:

Theorem 4.1. There exist a closed subset Crit(H,®) C M and an
observable T € C*° (M \ Crit(H, CD)) satisfying {T, H} =1 on
M\ Crit(H, @) such that

lim 1 J at [(x1 (©/1) 0 @_t) (m) — (x1(D/1) 0 1) (m)] = T(m)

T— 00 O

(Formula)
for each m € M\ Crit(H, ©).
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Remark 1:

Let 0;H :={®;, H} for each j. Then, the vector
VH:=(01H,...,04H) is an abstract velocity observable for the

pair (H, @), and
® - VH
(VH)Z

T =
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Remark 1:

Let 0;H :={®;, H} for each j. Then, the vector
VH:=(01H,...,04H) is an abstract velocity observable for the
pair (H, @), and

® - VH

(VH)2

T =

Due to the Assumption, we have once more

® - VH (0;H)
{T’H} - { (VH)z ’H} — JZ{(Dj’H}(V]]—l)Z = 1.
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Remark 2:

We must avoid the case “VH = 0”7, which leads to non-definiteness
of the observable T.
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Remark 2:

We must avoid the case “VH = 0”7, which leads to non-definiteness
of the observable T.

This suggests the definition:

Definition 4.2. Crit(H, @) := (VH)"'({0})) c M

e Crit(H, @) is closed in M.
e The usual critical set Crit(H) is contained in Crit(H, @), i.e

Crit(H {m eEM | Xu(m) = O} C Crit(H, @).

e BEach orbit {¢¢(m)}ier either stays in Crit(H, @) if
m € Crit(H, @), or stays outside Crit(H, ®) and is not periodic
if m & Crit(H, @©).
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Remark 3 (application):
Consider a scattering pair (H,H + V) with scattering map S.
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The classical time delay T(m) for the initial condition
m € M\ Crit(; @) defined in terms of the balls B, can be expressed
as follows:

T(m) is equal to the Lh.s. of (Formula) minus the same quantity
with m replaced by S(m).
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Remark 3 (application):
Consider a scattering pair (H,H + V) with scattering map S.

The classical time delay T(m) for the initial condition
m € M\ Crit(; @) defined in terms of the balls B, can be expressed
as follows:

T(m) is equal to the Lh.s. of (Formula) minus the same quantity
with m replaced by S(m).

Thus
T(m) = (T —ToS)(m).

(Classical Eisenbud-Wigner Formula supporting Buslaev/Pushnitski...)
Furthermore, one can check that
T(m) = (to @¢)(m) for each t € R,

so classical time delay is a first integral for the free motion.
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5 Examples

The framework covers many examples:

e Stark Hamiltonians,

e Homogeneous Hamiltonians,

e Kinetic Hamiltonians (we have seen them...),
e Repulsive harmonic potential,

e Simple pendulum,

e Central force systems,
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e Poincaré ball model,
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e Poincaré ball model,
e Covering manifolds,

e Wave (Klein-Gordon) equation,
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Covering manifolds,
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Poincaré ball model,
Covering manifolds,
Wave (Klein-Gordon) equation,
Nonlinear Schrodinger equation,

Korteweg-de Vries equation,

12-d/18



Poincaré ball model,

Covering manifolds,

Wave (Klein-Gordon) equation,
Nonlinear Schrodinger equation,
Korteweg-de Vries equation,

Quantum Hamiltonians defined via expectation values.

12-¢/18
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Example 5.1 (Poincaré ball model). Put on By C R™ the

Riemannian metric
4
(1—1ql?)?

gq(Xq’Yq):: (Xq'Yq)> q € By, Xq,Yq ETqB12Rn.
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Example 5.1 (Poincaré ball model). Put on By C R™ the

Riemannian metric
4
(1—1ql?)?

gq(Xq’Yq):: (Xq'Yq)> q € By, Xq,Yq ETqB12Rn.

Consider on M :=T"B; ~ {(q,p) € By x Rn}, with symplectic
form w = Zj dg’ A dpj, the kinetic energy Hamiltoninan

: 1 2
HiM =R, (a,p) =7 " (a)ppr=glpl*(1—a%)".
i k
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Example 5.2 (Poincaré ball model, continued).

Then:
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Example 5.2 (Poincaré ball model, continued).

Then:

o Xy 15 complete, since the integral curves of Xy correspond to
the geodesics curves of (B1,g), and (Bq,g) is geodesically

complete.
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Example 5.2 (Poincaré ball model, continued).

Then:

o Xy 15 complete, since the integral curves of Xy correspond to

the geodesics curves of (B1,g), and (Bq,g) is geodesically
complete.

e The observable

2
O: MR | “1/H(d,p) taph— ( (p-aq)(1—1lq]7) )
R 2R (0 + 9

satisfies the Assumption, since

{{d,H},H} = {e /" V2H,H} = 0.
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Example 5.2 (Poincaré ball model, continued).

Then:

o Xy 15 complete, since the integral curves of Xy correspond to

the geodesics curves of (B1,g), and (Bq,g) is geodesically
complete.

e The observable

2
O: MR | “1/H(d,p) taph— ( (p-aq)(1—1lq]7) )
R 2R (0 + 9

satisfies the Assumption, since
{{o,HL H} = {e /" V2H,H} = 0.

o Crit(H) = Crit(H, ®) = By x {0}.
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formulation:
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Given V,F € C*® (R;R), there ezists O1 C H'(R) ® H' (R) such that
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is well-defined and (Fréchet) C* .
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Example 5.3 (NLS). Follow [Kuksin93] for the Hamiltonian

formulation:

Real symplectic vector space M := L*(R) @ L?(R) with 2-form

Given V,F € C*® (R;R), there ezists O1 C H'(R) ® H' (R) such that

H:01 =R, (pq)— %J dx {(0xP)*+(0xq)*+V-(p*+4*)+F(p+49°)},
R

is well-defined and (Fréchet) C* .

The corresponding equation of motion is the NLS equation

d
cu=i(- ozu+ Vu+uF/ (lu?)), u:=p+iq.
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Example 5.4 (NLS, continued).

Then:
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Example 5.4 (NLS, continued).

Then:

e The completeness of Xy depends on the nonlinearity term and
18 equivalent to the global well-posedness of the NLS
([Bourgain99/, [Sulem /sulem99], etc.).
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Example 5.4 (NLS, continued).

Then:

e The completeness of Xy depends on the nonlinearity term and
18 equivalent to the global well-posedness of the NLS
([Bourgain99/, [Sulem /sulem99], etc.).

o When F is arbitrary and V = Const., the function
D(p,q) = % | dx idr(q? + p?) satisfies the Assumption, since
{CD, H} is equal to a first integral of the motion.



16-c/18

Example 5.4 (NLS, continued).

Then:

e The completeness of Xy depends on the nonlinearity term and

18 equivalent to the global well-posedness of the NLS
([Bourgain99/, [Sulem /sulem99], etc.).

o When F is arbitrary and V = Const., the function
D(p,q) = % | dx idr(q? + p?) satisfies the Assumption, since
{CD, H} is equal to a first integral of the motion.

o Crit(H) C Crit(H, ©).
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In the quantum case:

e H is a selfadjoint operator in a Hilbert space H,

e O =(Dq,...,D04) is a family of mutually commuting
selfadjoint operators in H satistfying a suitable version of the

commutation relation [[CD)-,H], H] =0,

e | is a time operator for H, 7.e. a symmetric operator satisfying
the canonical commutation relation [T, H] = 1.

e The confinement (resp. the non-periodicity) of the classical
orbits {@¢(mMm)}ier, M € M, correspond to the affiliation of the
quantum orbits {e'*H P}icr, P € H, to the singular (resp.
absolutely continuous) subspace of H.
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From classical to quantum

In the quantum case:

H is a selfadjoint operator in a Hilbert space H,

O =(Dy,...,Dy) is a family of mutually commuting
selfadjoint operators in H satistfying a suitable version of the
commutation relation [[CD)-,H], H] =0,

T is a time operator for H, i.e. a symmetric operator satisfying
the canonical commutation relation [T, H] = 1.

The confinement (resp. the non-periodicity) of the classical
orbits {@¢(mMm)}ier, M € M, correspond to the affiliation of the
quantum orbits {e'*H P}icr, P € H, to the singular (resp.
absolutely continuous) subspace of H.

First integrals (as T) correspond to decomposable operators.
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