Resolvent expansions and continuity of the scattering matrix at embedded thresholds: the case of quantum waveguides

Rafael Tiedra
(Catholic University of Chile)

Prague, January 2015

Joint work with S. Richard (University of Nagoya)

Contents

1 General setup 3
2 Asymptotic expansion 5
3 Application to quantum waveguides 12
4 References 21

1 General setup

- \mathcal{H}, Hilbert space with norm $\|\cdot\|$ and scalar product $\langle\cdot, \cdot\rangle$
- $\mathscr{B}(\mathcal{H})$, bounded linear operators on \mathcal{H}
- H, self-adjoint operator in \mathcal{H} with spectrum $\sigma(H)$
- $\mathbb{C}_{ \pm}:=\{z \in \mathbb{C} \mid \pm \operatorname{Im}(z)>0\}$

Basic motivation: For $z \in \mathbb{C}_{ \pm}$, determine the behaviour of the resolvent $R(z):=(H-z)^{-1}$ as $z \rightarrow z_{0} \in \sigma(H)$.
(useful for spectral theory, scattering theory, propagation estimates, ...)

If $v=v^{*} \in \mathscr{B}(\mathcal{H})$ and $u=u^{*}=u^{-1} \in \mathscr{B}(\mathcal{H})$ are such that

$$
H=H_{0}+v u v,
$$

then the resolvent equation reads

$$
u v R(z) v u=u-\underbrace{\left(u-v R_{0}(z) v\right)^{-1}}_{=A(z)^{-1} \text { later }} \text { with } R_{0}(z):=\left(H_{0}-z\right)^{-1}
$$

Example. If $H-H_{0}=V$ with $V \in \mathrm{~L}^{\infty}\left(\mathbb{R}^{d} ; \mathbb{R}\right)$, then
$v(x):=|V(x)|^{1 / 2}$ and

$$
u(x):= \begin{cases}+1 & \text { if } V(x) \geq 0 \\ -1 & \text { if } V(x)<0\end{cases}
$$

2 Asymptotic expansion

Proposition. Let $O \subset \mathbb{C}$ with 0 as accumulation point, let $A(z)=A_{0}+z A_{1}(z)$ with $A_{0} \in \mathscr{B}(\mathcal{H})$ and $\left\|A_{1}(z)\right\| \leq$ Const. for all $z \in O$, and let $S=S^{2} \in \mathscr{B}(\mathcal{H})$ be such that
(i) $A_{0}+S$ is boundedly invertible and (ii) $S\left(A_{0}+S\right)^{-1} S=S$.

Then, for $|z|$ small enough the operator $B(z): S \mathcal{H} \rightarrow S \mathcal{H}$
$B(z):=\frac{1}{z}\left(S-S(A(z)+S)^{-1} S\right) \equiv S\left(A_{0}+S\right)^{-1} \sum_{j \geq 0}(-z)^{j}\left\{A_{1}(z)\left(A_{0}+S\right)^{-1}\right\}^{j+1} S$
is uniformly bounded as $z \rightarrow 0$. Also, $A(z)$ is boundedly invertible in \mathcal{H} if and only if $B(z)$ is boundedly invertible in $S \mathcal{H}$, in which case

$$
A(z)^{-1}=(A(z)+S)^{-1}+\frac{1}{z}(A(z)+S)^{-1} S B(z)^{-1} S(A(z)+S)^{-1}
$$

- The original version of this proposition is due to [Jensen-Nenciu 2001/2004] (see also [Erdoğan-Schlag 2004]).
- In the previous works, one either has that $A_{0}=A_{0}^{*}$ or that S is a Riesz projection (a projection $S=S^{2}$ given in terms of a contour integral of the resolvent of a closed operator).

Riesz projection

There are two natural choices for S, a Riesz projection $S=S_{r}$ or an orthogonal projection $S=S_{0}$. We start with the Riesz projection.

Assumption A. 0 is an isolated point in $\sigma\left(A_{0}\right)$
Let S_{r} be the Riesz projection associated with $0 \in \sigma\left(A_{0}\right)$. Then,

$$
A_{0} S_{r}=S_{r} A_{0}=S_{r} A_{0} S_{r} \quad \text { and } \quad A_{0}+S_{r} \text { is boundedly invertible. }
$$

Thus, the hypothesis (i) of the proposition is verified.

A sufficient condition for the hypothesis (ii) of the proposition is $A_{0} S_{r}=0$ (which is true for example if $A_{0}=A_{0}^{*}$), because

$$
\begin{aligned}
S_{r}\left(A_{0}+S_{r}\right)^{-1} S_{r} & =\left(A_{0}+S_{r}\right) S_{r}\left(A_{0}+S_{r}\right)^{-1} S_{r} \\
& =S_{r}\left(A_{0}+S_{r}\right)\left(A_{0}+S_{r}\right)^{-1} S_{r} \\
& =S_{r}
\end{aligned}
$$

(in general $A_{0} S_{r}$ is only quasi-nilpotent; that is, $\sigma\left(A_{0} S_{r}\right)=\{0\}$)

Assumption B. $\operatorname{Im}\left(A_{0}\right) \geq 0$
Assumption C. $S_{r} A_{0} S_{r}$ is a trass-class operator
Lemma. If Assumptions A, B, C are verified, then $A_{0} S_{r}=0$.
Proof. The operator $J:=S_{r} A_{0} S_{r}$ in $S_{r} \mathcal{H}$ satisfies

$$
\operatorname{Im}\left\langle S_{r} \varphi, J S_{r} \varphi\right\rangle=\operatorname{Im}\left\langle S_{r} \varphi, S_{r} A_{0} S_{r} S_{r} \varphi\right\rangle=\operatorname{Im}\left\langle S_{r} \varphi, A_{0} S_{r} \varphi\right\rangle \geq 0
$$

Since J is quasi-nilpotent and trace-class, it follows

$$
\begin{aligned}
0=\operatorname{Tr}(J)=\operatorname{Tr}(\operatorname{Re}(J))+i \underbrace{\operatorname{Tr}(\operatorname{Im}(J))}_{\geq 0} & \Longrightarrow \operatorname{Im}(J)=0 \\
& \Longrightarrow J=J^{*} \\
& \Longrightarrow J=0 .
\end{aligned}
$$

Thus, the hypothesis (ii) of the proposition is verified.

Orthogonal projection

Assumption B. $\operatorname{Im}\left(A_{0}\right) \geq 0$

Let S_{0} be the orthogonal projection on

$$
\operatorname{ker}\left(A_{0}\right) \equiv \operatorname{ker}\left(\operatorname{Re}\left(A_{0}\right)\right) \cap \operatorname{ker}\left(\operatorname{Im}\left(A_{0}\right)\right) \equiv \operatorname{ker}\left(A_{0}^{*}\right) .
$$

Then, $A_{0} S_{o}=0$, and thus the hypotheses (i) and (ii) of the proposition are verified if $A_{0}+S_{0}$ is boundedly invertible.

Two cases in which $A_{0}+S_{0}$ is boundedly invertible:
Lemma. If Assumptions A, B, C are verified, then $A_{0}+S_{0}$ is boundedly invertible if and only if $S_{r}=S_{r}^{*}=S_{o}$.

Lemma. If Assumption B is verified and if A_{0} is a finite-rank operator or $A_{0}=U+K$ with U unitary and K compact, then $A_{0}+S_{0}$ is boundedly invertible.

3 Application to quantum waveguides

- Σ, bounded open connected set in $\mathbb{R}^{d-1}, d \geq 2$,
- $\Omega:=\Sigma \times \mathbb{R}$
- $\mathcal{H}:=\mathrm{L}^{2}(\Omega) \simeq \mathrm{L}^{2}(\Sigma) \otimes \mathrm{L}^{2}(\mathbb{R})$

Free Hamiltonian and perturbed Hamiltonian

$$
\begin{aligned}
& \qquad H_{0}:=-\triangle_{D}^{\Sigma} \otimes 1+1 \otimes\left(-\triangle^{\mathbb{R}}\right) \quad \text { and } \quad H:=H_{0}+V \text {, } \\
& \text { with }-\triangle_{D} \sum_{\text {the Dirichlet Laplacian on } \Sigma \text { and } V \in L^{\infty}(\Omega ; \mathbb{R}) \text { of }}^{\text {compact support. }}
\end{aligned}
$$

The Dirichlet Laplacian $-\triangle_{\mathrm{D}}^{\Sigma}$ has purely discrete spectrum

$$
\tau:=\left\{\lambda_{n}\right\}_{n \geq 1}
$$

consisting in eigenvalues $\lambda_{1} \leq \lambda_{2} \leq \cdots$ repeated according to multiplicity (these are the embedded thresholds). \mathcal{P}_{n} is the orthogonal projection associated with λ_{n}.

Known facts (see for instance [T. 2006]):

- $\sigma(H)=\sigma_{\text {ess }}(H)=\sigma_{\mathrm{ac}}(H)=\left[\lambda_{1}, \infty\right)$
- $\sigma_{\mathrm{p}}(H)$ can accumulate at points of τ only
- the wave operators $W_{ \pm}:=\mathrm{s}-\lim _{t \rightarrow \pm \infty} \mathrm{e}^{i t H} \mathrm{e}^{-i t H_{0}}$ exist and are complete
- the scattering operator $S:=W_{+}^{*} W_{-}$is unitary
S is decomposable in the spectral representation of H_{0} as follows.
For $\lambda \geq \lambda_{1}$, set

$$
\mathbb{N}(\lambda):=\left\{n \geq 1 \mid \lambda_{n} \leq \lambda\right\}
$$

and

$$
\mathcal{H}(\lambda):=\bigoplus_{n \in \mathbb{N}(\lambda)}\left\{\mathcal{P}_{n} L^{2}(\Sigma) \oplus \mathcal{P}_{n} L^{2}(\Sigma)\right\}
$$

There is a unitary operator $\mathscr{F}_{0}: \mathcal{H} \rightarrow \int_{\left[\lambda_{1}, \infty\right)}^{\oplus} \mathcal{H}(\lambda) \mathrm{d} \lambda$ such that

$$
\mathscr{F}_{0} H_{0} \mathscr{F}_{0}^{*}=\int_{\left[\lambda_{1}, \infty\right)}^{\oplus} \lambda \mathrm{d} \lambda \quad \text { and } \quad \mathscr{F}_{0} S \mathscr{F}_{0}^{*}=\int_{\left[\lambda_{1}, \infty\right)}^{\oplus} S(\lambda) \mathrm{d} \lambda,
$$

with $S(\lambda)$ unitary in $\mathcal{H}(\lambda)$ for a.e. $\lambda \geq \lambda_{1}$, and with

$$
\left[\lambda_{1}, \infty\right) \backslash\left\{\tau \cup \sigma_{\mathrm{p}}(H)\right\} \mapsto S(\lambda) \in \mathscr{B}(\mathcal{H}(\lambda))
$$

of class C^{∞}.
(it remains to determine the behavior of $S(\lambda)$ as

$$
\left.\lambda \rightarrow \lambda_{0} \in \tau \cup \sigma_{\mathrm{p}}(H) \ldots\right)
$$

For a.e. $\lambda \geq \lambda_{1}$, let $S(\lambda) \equiv\left\{S_{n n^{\prime}}(\lambda)\right\}_{n, n^{\prime} \in \mathbb{N}(\lambda)}$ with

$$
S_{n n^{\prime}}(\lambda): \mathcal{P}_{n^{\prime}} L^{2}(\Sigma) \rightarrow \mathcal{P}_{n} L^{2}(\Sigma) .
$$

The behaviour of $S_{n n^{\prime}}(\lambda)$ as $\lambda \rightarrow \lambda_{0} \in \tau$ is the following:
Theorem ([Richard, T. 2014]). Let $\lambda_{m} \in \tau$ and $n, n^{\prime} \geq 1$. Then,
(a) if $\lambda_{n}, \lambda_{n^{\prime}}<\lambda_{m}$, the map $\lambda \mapsto S_{n n^{\prime}}(\lambda)$ is continuous in a neighbourhood of λ_{m},
(b) if $\lambda_{n}, \lambda_{n^{\prime}} \leq \lambda_{m}$, the limit $\lim _{\varepsilon \searrow 0} S_{n n^{\prime}}\left(\lambda_{m}+\varepsilon\right)$ exists.

- One cannot ask for more continuity in (b), since a channel could open at the energy λ_{m}.
- The case $\lambda \rightarrow \lambda_{0} \in \sigma_{\mathrm{p}}(H)$ is easier to treat.

Idea of the proof. Use a stationary representation

$$
S(\lambda)=1_{\mathcal{H}(\lambda)}-2 \pi i \mathscr{F}_{0}(\lambda) v\left(u+v R_{0}(\lambda+i 0) v\right)^{-1} v \mathscr{F}_{0}(\lambda)^{*}
$$

with $\mathscr{F}_{0}(\lambda) \varphi:=\left(\mathscr{F}_{0} \varphi\right)(\lambda)$, and then apply iteratively Proposition 2 to get an asymptotic expansion for $\left(u+v R_{0}\left(\lambda_{m}+\varepsilon\right) v\right)^{-1}$ for suitable small $\varepsilon \in \mathbb{C}$.

An asymptotic expansion for $\mathscr{F}_{0}\left(\lambda_{m}+\varepsilon\right)$ is also necessary.

- In the proof, the iterations stop because

$$
u v R\left(\lambda_{m}+\varepsilon\right) v u=u-\left(u+v R_{0}\left(\lambda_{m}+\varepsilon\right) v\right)^{-1}
$$

and for suitable ε (such as $\varepsilon= \pm i \delta, \delta>0$)

$$
\left\|\varepsilon R\left(\lambda_{m}+\varepsilon\right)\right\| \leq 1 \Longrightarrow \limsup _{\varepsilon \rightarrow 0}\left\|\varepsilon\left(u+v R_{0}\left(\lambda_{m}+\varepsilon\right) v\right)^{-1}\right\|<\infty
$$

- Another consequence of the asymptotic expansion for $\left(u+v R_{0}\left(\lambda_{m}+\varepsilon\right) v\right)^{-1}$ is the absence of accumulation of eigenvalues of H at the points of τ.

Gracias !

4 References

- A. Jensen and G. Nenciu. A unified approach to resolvent expansions at thresholds. Rev. Math. Phys., 2001/2004
- S. Richard and R. Tiedra. Resolvent expansions and continuity of the scattering matrix at embedded thresholds: the case of quantum waveguides. to appear in Bull. Soc. Math. France
- R. Tiedra. Time delay and short-range scattering in quantum waveguides. Ann. Henri Poincaré, 2006

