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1 General setup

� H, Hilbert spae with norm k � k and salar produt h � ; � i

� B(H), bounded linear operators on H

� H, self-adjoint operator in H with spetrum �(H)

� C

�

:=

{

z 2 C j � Im(z) > 0

}

Basi motivation: For z 2 C

�

, determine the behaviour of the

resolvent R(z) := (H � z)

�1

as z ! z

0

2 �(H).

(useful for spetral theory, sattering theory, propagation

estimates, . . . )
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If v = v

�

2 B(H) and u = u

�

= u

�1

2 B(H) are suh that

H = H

0

+ v u v ;

then the resolvent equation reads

uvR(z)vu = u �

(
u � vR

0

(z)v

)

�1

︸ ︷︷ ︸
= A(z)

�1

later

with R

0

(z) := (H

0

� z)

�1

:

Example. If H �H

0

= V with V 2 L

1

(R

d

;R), then

v(x) := jV (x)j

1=2

and

u(x) :=







+1 if V (x) � 0

�1 if V (x) < 0:



5/21

2 Asymptoti expansion

Proposition. Let O � C with 0 as aumulation point, let

A(z) = A

0

+ zA

1

(z) with A

0

2 B(H) and kA

1

(z)k � Const: for all

z 2 O, and let S = S

2

2 B(H) be suh that

(i) A

0

+ S is boundedly invertible and (ii) S(A

0

+ S)

�1

S = S.

Then, for jz j small enough the operator B(z) : SH ! SH

B(z) :=

1

z

(

S � S

(

A(z) + S

)
�1

S

)

� S(A

0

+S)

�1

∑

j�0

(�z)

j

{

A

1

(z)(A

0

+S)

�1

}

j+1

S

is uniformly bounded as z ! 0. Also, A(z) is boundedly invertible in

H if and only if B(z) is boundedly invertible in SH, in whih ase

A(z)

�1

=

(

A(z) + S

)

�1

+

1

z

(

A(z) + S

)

�1

SB(z)

�1

S

(

A(z) + S

)

�1

:
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� The original version of this proposition is due to

[Jensen-Neniu 2001/2004℄ (see also [Erdo�gan-Shlag 2004℄).

� In the previous works, one either has that A

0

= A

�
0

or that S is a

Riesz projetion (a projetion S = S

2

given in terms of a ontour

integral of the resolvent of a losed operator).
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Riesz projetion

There are two natural hoies for S, a Riesz projetion S = S

r

or an

orthogonal projetion S = S

o

. We start with the Riesz projetion.

Assumption A. 0 is an isolated point in �(A

0

)

Let S

r

be the Riesz projetion assoiated with 0 2 �(A

0

). Then,

A

0

S

r

= S

r

A

0

= S

r

A

0

S

r

and A

0

+ S

r

is boundedly invertible.

Thus, the hypothesis (i) of the proposition is veri�ed.
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A suÆient ondition for the hypothesis (ii) of the proposition is

A

0

S

r

= 0 (whih is true for example if A

0

= A

�
0

), beause

S

r

(A

0

+ S

r

)

�1

S

r

= (A

0

+ S

r

)S

r

(A

0

+ S

r

)

�1

S

r

= S

r

(A

0

+ S

r

)(A

0

+ S

r

)

�1

S

r

= S

r

(in general A

0

S

r

is only quasi-nilpotent; that is, �(A

0

S

r

) = f0g)
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Assumption B. Im(A
0

) � 0

Assumption C. S

r

A

0

S

r

is a trass-lass operator

Lemma. If Assumptions A,B,C are veri�ed, then A

0

S

r

= 0.

Proof. The operator J := S

r

A

0

S

r

in S

r

H satis�es

Im
〈

S

r

'; JS

r

'

〉
= Im

〈

S

r

'; S

r

A

0

S

r

S

r

'

〉

= Im
〈

S

r

';A

0

S

r

'

〉

� 0:

Sine J is quasi-nilpotent and trae-lass, it follows

0 = Tr(J) = Tr
(
Re(J)

)
+ i Tr

(
Im(J)

)

︸ ︷︷ ︸

�0

=) Im(J) = 0

=) J = J

�

=) J = 0:

Thus, the hypothesis (ii) of the proposition is veri�ed.
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Orthogonal projetion

Assumption B. Im(A
0

) � 0

Let S

o

be the orthogonal projetion on

ker(A

0

) � ker

(
Re(A

0

)

)

\ ker

(
Im(A

0

)

)

� ker(A

�
0

):

Then, A

0

S

o

= 0, and thus the hypotheses (i) and (ii) of the

proposition are veri�ed if A

0

+ S

o

is boundedly invertible.
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Two ases in whih A

0

+ S

o

is boundedly invertible :

Lemma. If Assumptions A,B,C are veri�ed, then A

0

+ S

o

is

boundedly invertible if and only if S

r

= S

�

r

= S

o

.

Lemma. If Assumption B is veri�ed and if A

0

is a �nite-rank

operator or A

0

= U +K with U unitary and K ompat, then

A

0

+ S

o

is boundedly invertible.
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3 Appliation to quantum waveguides

�

�� R

� �, bounded open onneted set in R

d�1

, d � 2,

� 
 := �� R

� H := L

2

(
) ' L

2

(�)
 L

2

(R)
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Free Hamiltonian and perturbed Hamiltonian

H

0

:= �4

�
D


 1 + 1
 (�4

R

) and H := H

0

+ V;

with �4

�
D

the Dirihlet Laplaian on � and V 2 L

1

(
;R) of

ompat support.

The Dirihlet Laplaian �4

�
D

has purely disrete spetrum

� := f�

n

g

n�1

onsisting in eigenvalues �

1

� �

2

� � � � repeated aording to

multipliity (these are the embedded thresholds). P

n

is the

orthogonal projetion assoiated with �

n

.
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Known fats (see for instane [T. 2006℄) :

� �(H) = �

ess

(H) = �

a

(H) = [�

1

;1)

� �

p

(H) an aumulate at points of � only

� the wave operators W

�

:= s- lim

t!�1

e

i tH

e

�i tH

0

exist and are

omplete

� the sattering operator S := W

�

+

W

�

is unitary
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S is deomposable in the spetral representation of H

0

as follows.

For � � �

1

, set

N(�) :=

{

n � 1 j �

n

� �

}

and

H(�) :=

⊕

n2N(�)

{

P

n

L

2

(�)�P

n

L

2

(�)

}

:
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There is a unitary operator F

0

: H !

∫

�

[�

1

;1)

H(�) d� suh that

F

0

H

0

F

�

0

=

∫

�

[�

1

;1)

� d� and F

0

SF

�

0

=

∫

�

[�

1

;1)

S(�) d�;

with S(�) unitary in H(�) for a.e. � � �

1

, and with

[�

1

;1) n

{

� [ �

p

(H)

}

7! S(�) 2 B
(

H(�)

)

of lass C

1

.

(it remains to determine the behavior of S(�) as

�! �

0

2 � [ �

p

(H) . . . )
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For a.e. � � �

1

, let S(�) � fS

nn

0

(�)g

n;n

0

2N(�)

with

S

nn

0

(�) : P

n

0L

2

(�)! P

n

L

2

(�):

The behaviour of S

nn

0

(�) as �! �

0

2 � is the following :

Theorem ([Rihard, T. 2014℄). Let �

m

2 � and n; n

0

� 1. Then,

(a) if �

n

; �

n

0

< �

m

, the map � 7! S

nn

0

(�) is ontinuous in a

neighbourhood of �

m

,

(b) if �

n

; �

n

0

� �

m

, the limit lim

"&0

S

nn

0

(�

m

+ ") exists.

� One annot ask for more ontinuity in (b), sine a hannel ould

open at the energy �

m

.

� The ase �! �

0

2 �

p

(H) is easier to treat.
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Idea of the proof. Use a stationary representation

S(�) = 1

H(�)

� 2�iF

0

(�)v

(

u + vR

0

(�+ i 0)v

)

�1

vF

0

(�)

�

with F

0

(�)' := (F

0

')(�), and then apply iteratively Proposition 2

to get an asymptoti expansion for

(

u + vR

0

(�

m

+ ")v

)

�1

for

suitable small " 2 C.

An asymptoti expansion for F

0

(�

m

+ ") is also neessary.
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� In the proof, the iterations stop beause

uvR(�

m

+ ")vu = u �

(

u + vR

0

(�

m

+ ")v

)

�1

and for suitable " (suh as " = �i Æ, Æ > 0)

∥
∥

"R(�

m

+")

∥
∥

� 1 =) lim sup

"!0

∥
∥

"

(

u+ vR

0

(�

m

+")v

)

�1

∥
∥

<1:

� Another onsequene of the asymptoti expansion for

(

u + vR

0

(�

m

+ ")v

)

�1

is the absene of aumulation of

eigenvalues of H at the points of � .
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Graias !
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