Time delay for dispersive quantum Hamiltonians

Rafael Tiedra de Aldecoa
(University of Cergy-Pontoise)
Santiago, September 2008

1 Two-body scattering in \mathbb{R}^{d}

1 Two-body scattering in \mathbb{R}^{d}

- Hilbert space $\mathcal{H}:=L^{2}\left(\mathbb{R}^{\mathrm{d}}\right)$

1 Two-body scattering in \mathbb{R}^{d}

- Hilbert space $\mathcal{H}:=L^{2}\left(\mathbb{R}^{\mathrm{d}}\right)$
- Free Hamiltonian H_{0} with purely absolutely continuous spectrum $\sigma\left(\mathrm{H}_{0}\right)$ (for instance $\mathrm{H}_{0}:=-\Delta$)

1 Two-body scattering in \mathbb{R}^{d}

- Hilbert space $\mathcal{H}:=L^{2}\left(\mathbb{R}^{\mathrm{d}}\right)$
- Free Hamiltonian H_{0} with purely absolutely continuous spectrum $\sigma\left(\mathrm{H}_{0}\right)$ (for instance $\mathrm{H}_{0}:=-\Delta$)
- Full Hamiltonian H (typically $\left.H=H_{0}+V\right)$

1 Two-body scattering in \mathbb{R}^{d}

- Hilbert space $\mathcal{H}:=L^{2}\left(\mathbb{R}^{d}\right)$
- Free Hamiltonian H_{0} with purely absolutely continuous spectrum $\sigma\left(\mathrm{H}_{0}\right)$ (for instance $\mathrm{H}_{0}:=-\Delta$)
- Full Hamiltonian H (typically $\left.H=\mathrm{H}_{0}+V\right)$
- Complete wave operators, i.e.

$$
W_{ \pm}:=s_{-}^{-} \lim _{\mathrm{t} \rightarrow \pm \infty} \mathrm{e}^{\mathrm{itH}} \mathrm{e}^{-i \mathrm{tH}}
$$

with $\operatorname{Ran}\left(W_{-}\right)=\operatorname{Ran}\left(W_{+}\right)=\mathcal{H}_{\mathrm{ac}}(\mathrm{H})$

1 Two-body scattering in \mathbb{R}^{d}

- Hilbert space $\mathcal{H}:=L^{2}\left(\mathbb{R}^{\mathrm{d}}\right)$
- Free Hamiltonian H_{0} with purely absolutely continuous spectrum $\sigma\left(\mathrm{H}_{0}\right)$ (for instance $\mathrm{H}_{0}:=-\Delta$)
- Full Hamiltonian H (typically $\left.H=\mathrm{H}_{0}+V\right)$
- Complete wave operators, i.e.

$$
W_{ \pm}:=s_{-} \lim _{\mathrm{t} \rightarrow \pm \infty} \mathrm{e}^{\mathrm{itH}} \mathrm{e}^{-\mathrm{itH}}
$$

with $\operatorname{Ran}\left(W_{-}\right)=\operatorname{Ran}\left(W_{+}\right)=\mathcal{H}_{\mathrm{ac}}(\mathrm{H})$

- Scattering operator

$$
S:=W_{+}^{*} W_{-}
$$

(unitarity)

Figure 1: Wave operators $W_{ \pm}$and scattering operator S

There exist Hilbert spaces $\mathcal{H}_{\lambda}, \lambda \in \sigma\left(\mathrm{H}_{0}\right)$, and a unitary transformation

$$
\mathcal{U}: \mathcal{H} \rightarrow \int_{\sigma\left(H_{0}\right)}^{\oplus} \mathrm{d} \lambda \mathcal{H}_{\lambda}
$$

such that

$$
\mathcal{U} \mathrm{H}_{0} \mathcal{U}^{-1}=\int_{\sigma\left(\mathrm{H}_{0}\right)}^{\oplus} \mathrm{d} \lambda \lambda .
$$

There exist Hilbert spaces $\mathcal{H}_{\lambda}, \lambda \in \sigma\left(\mathrm{H}_{0}\right)$, and a unitary transformation

$$
\mathcal{U}: \mathcal{H} \rightarrow \int_{\sigma\left(H_{0}\right)}^{\oplus} \mathrm{d} \lambda \mathcal{H}_{\lambda}
$$

such that

$$
\mathcal{U} \mathrm{H}_{0} \chi^{-1}=\int_{\sigma\left(\mathrm{H}_{0}\right)}^{\oplus} \mathrm{d} \lambda \lambda .
$$

S is decomposable in the spectral representation of H_{0}, i.e. there exist unitary operators $S(\lambda)$ in \mathcal{H}_{λ} such that

$$
\mathcal{U S U}^{-1}=\int_{\sigma\left(H_{0}\right)}^{\oplus} d \lambda S(\lambda) .
$$

There exist Hilbert spaces $\mathcal{H}_{\lambda}, \lambda \in \sigma\left(\mathrm{H}_{0}\right)$, and a unitary transformation

$$
\mathcal{U}: \mathcal{H} \rightarrow \int_{\sigma\left(\mathrm{H}_{0}\right)}^{\oplus} \mathrm{d} \lambda \mathcal{H}_{\lambda}
$$

such that

$$
\mathcal{U} \mathrm{H}_{0} \mathcal{U}^{-1}=\int_{\sigma\left(\mathrm{H}_{0}\right)}^{\oplus} \mathrm{d} \lambda \lambda
$$

S is decomposable in the spectral representation of H_{0}, i.e. there exist unitary operators $S(\lambda)$ in \mathcal{H}_{λ} such that

$$
\mathcal{U S U}^{-1}=\int_{\sigma\left(H_{0}\right)}^{\oplus} d \lambda S(\lambda)
$$

The collection $\{\mathrm{S}(\lambda)\}, \lambda \in \sigma\left(\mathrm{H}_{0}\right)$, is the scattering matrix.

2 Stationary approach to time delay: Eisenbud-Wigner formula

2 Stationary approach to time delay: Eisenbud-Wigner formula

- $\{S(\lambda)\}_{\lambda \geq 0}$, scattering matrix for $H_{0}=-\Delta$ and $H=H_{0}+V$, with V radial

2 Stationary approach to time delay: Eisenbud-Wigner formula

- $\{S(\lambda)\}_{\lambda \geq 0}$, scattering matrix for $\mathrm{H}_{0}=-\Delta$ and $\mathrm{H}=\mathrm{H}_{0}+\mathrm{V}$, with V radial

Heuristically, the time delay of an outcoming radial wave packet with respect to the associated free incoming wave packet (peaked around the kinetic energy λ) is given by derivative of the phase shift:

$$
\tau(\lambda)=-i S(\lambda)^{*} \frac{d S(\lambda)}{d \lambda}
$$

2 Stationary approach to time delay: Eisenbud-Wigner formula

- $\{S(\lambda)\}_{\lambda \geq 0}$, scattering matrix for $\mathrm{H}_{0}=-\Delta$ and $\mathrm{H}=\mathrm{H}_{0}+\mathrm{V}$, with V radial

Heuristically, the time delay of an outcoming radial wave packet with respect to the associated free incoming wave packet (peaked around the kinetic energy λ) is given by derivative of the phase shift:

$$
\tau(\lambda)=-i S(\lambda)^{*} \frac{d S(\lambda)}{d \lambda}
$$

(Eisenbud-Wigner time delay, 60's)

3 Time delay in terms of sojourn times

3 Time delay in terms of sojourn times

Take a function $f \in L^{\infty}\left(\mathbb{R}^{d}\right)$ decaying to 0 at infinity such that $f=1$ on a bounded neighbourhood Σ of 0 . Let $Q \equiv\left(Q_{1}, \ldots, Q_{d}\right)$ be the vector position operator in \mathcal{H}.

3 Time delay in terms of sojourn times

Take a function $f \in L^{\infty}\left(\mathbb{R}^{d}\right)$ decaying to 0 at infinity such that $f=1$ on a bounded neighbourhood Σ of 0 . Let $Q \equiv\left(Q_{1}, \ldots, Q_{d}\right)$ be the vector position operator in \mathcal{H}.
$\Longrightarrow f(Q / r), r>0$, is (approximately) the operator of localization in the dilated region $\Sigma_{r}:=r \sum$ of \mathbb{R}^{d}.

3 Time delay in terms of sojourn times

Take a function $f \in L^{\infty}\left(\mathbb{R}^{d}\right)$ decaying to 0 at infinity such that $f=1$ on a bounded neighbourhood Σ of 0 . Let $Q \equiv\left(Q_{1}, \ldots, Q_{d}\right)$ be the vector position operator in \mathcal{H}.
$\Longrightarrow f(Q / r), r>0$, is (approximately) the operator of localization in the dilated region $\Sigma_{r}:=r \sum$ of \mathbb{R}^{d}.

Example: $f(Q / r)$ is the (exact) localization operator in $\mathcal{B}_{r}:=\left\{x \in \mathbb{R}^{\boldsymbol{d}}| | x \mid<r\right\}$ if $f=\chi_{\mathcal{B}_{1}}$.

Let $\varphi \in \mathcal{H}$ be an appropriate normalised scattering state.

- Sojourn time of the freely evolving state $\mathrm{e}^{-\mathfrak{i t} \mathrm{H}_{0}} \varphi$ in Σ_{r} :

$$
\mathrm{T}_{\mathrm{r}}^{0}(\varphi):=\int_{\mathbb{R}} \mathrm{dt}\left\langle\mathrm{e}^{-\mathrm{itH}_{0}} \varphi, \mathrm{f}(\mathrm{Q} / \mathrm{r}) \mathrm{e}^{-\mathrm{itH}} \varphi\right\rangle
$$

Let $\varphi \in \mathcal{H}$ be an appropriate normalised scattering state.

- Sojourn time of the freely evolving state $\mathrm{e}^{-\mathrm{itH}} \mathrm{H}_{0} \varphi$ in Σ_{r} :

$$
\mathrm{T}_{\mathrm{r}}^{0}(\varphi):=\int_{\mathbb{R}} \mathrm{dt}\left\langle\mathrm{e}^{-\mathrm{itH}} \mathrm{H}_{0} \varphi, \mathrm{f}(\mathrm{Q} / \mathrm{r}) \mathrm{e}^{-\mathfrak{i t H _ { 0 }}} \varphi\right\rangle
$$

- Sojourn time of the associated scattering state $\mathrm{e}^{-\mathrm{itH}} W_{-} \varphi$ in Σ_{r} :

$$
\mathrm{T}_{\mathrm{r}}(\varphi):=\int_{\mathbb{R}} \mathrm{dt}\left\langle\mathrm{e}^{-\mathrm{itH}} \mathrm{~W}_{-} \varphi, \mathrm{f}(\mathrm{Q} / \mathrm{r}) \mathrm{e}^{-\mathrm{itH}} \mathrm{~W}_{-} \varphi\right\rangle
$$

Time delay for the scattering process with incoming state φ in Σ_{r} :

$$
\tau_{\mathrm{r}}^{\mathrm{in}}(\varphi):=\mathrm{T}_{\mathrm{r}}(\varphi)-\mathrm{T}_{\mathrm{r}}^{0}(\varphi) .
$$

Time delay for the scattering process with incoming state φ in Σ_{r} :

$$
\tau_{r}^{\operatorname{in}}(\varphi):=\mathrm{T}_{\mathrm{r}}(\varphi)-\mathrm{T}_{\mathrm{r}}^{0}(\varphi) .
$$

(definition introduced by Jauch, Misra, and Sinha in the 70's, when $f=\chi_{\mathcal{B}_{1}}$ and $H_{0}=-\Delta$)

Figure 2: Interpretation of $\tau_{r}^{\text {in }}(\varphi)$

If $f=\chi_{\mathcal{B}_{1}}, H_{0}=-\Delta$, and H is appropriate, $\tau_{r}^{\mathrm{in}}(\varphi)$ exists for each $r>0$, and

$$
\begin{aligned}
\lim _{r \rightarrow \infty} \tau_{r}^{\operatorname{in}}(\varphi) & =\int_{0}^{\infty} \mathrm{d} \lambda\left\langle(\mathcal{U} \varphi)(\lambda),-\mathrm{i} S(\lambda)^{*}\left(\frac{\mathrm{dS}(\lambda)}{\mathrm{d} \lambda}\right)(\mathcal{U} \varphi)(\lambda)\right\rangle_{\mathrm{L}^{2}\left(\mathbb{S}^{d-1}\right)} \\
& \equiv\left\langle\varphi, \tau_{\mathrm{E}-\mathrm{w}} \varphi\right\rangle .
\end{aligned}
$$

If $\mathrm{f}=\chi_{\mathcal{B}_{1}}, \mathrm{H}_{0}=-\Delta$, and H is appropriate, $\tau_{r}^{\mathrm{in}}(\varphi)$ exists for each $r>0$, and

$$
\begin{aligned}
\lim _{r \rightarrow \infty} \tau_{r}^{\mathrm{in}}(\varphi) & =\int_{0}^{\infty} \mathrm{d} \lambda\left\langle(\mathcal{U} \varphi)(\lambda),-\mathrm{i} S(\lambda)^{*}\left(\frac{\mathrm{dS}(\lambda)}{\mathrm{d} \lambda}\right)(\mathcal{U} \varphi)(\lambda)\right\rangle_{\mathrm{L}^{2}\left(\mathbb{S}^{d}-1\right)} \\
& \equiv\left\langle\varphi, \tau_{\mathrm{E}-\mathrm{W}} \varphi\right\rangle
\end{aligned}
$$

This formula expresses the identity of time delay (defined in terms of sojourn times) and Eisenbud-Wigner time delay.

If $\mathrm{f}=\chi_{\mathcal{B}_{1}}, \mathrm{H}_{0}=-\Delta$, and H is appropriate, $\tau_{r}^{\mathrm{in}}(\varphi)$ exists for each $r>0$, and

$$
\begin{aligned}
\lim _{r \rightarrow \infty} \tau_{r}^{\mathrm{in}}(\varphi) & =\int_{0}^{\infty} \mathrm{d} \lambda\left\langle(\mathcal{U} \varphi)(\lambda),-\mathrm{i} S(\lambda)^{*}\left(\frac{\mathrm{dS}(\lambda)}{\mathrm{d} \lambda}\right)(\mathcal{U} \varphi)(\lambda)\right\rangle_{\mathrm{L}^{2}\left(\mathbb{S}^{d}-1\right)} \\
& \equiv\left\langle\varphi, \tau_{\mathrm{E}-\mathrm{w}} \varphi\right\rangle
\end{aligned}
$$

This formula expresses the identity of time delay (defined in terms of sojourn times) and Eisenbud-Wigner time delay.
(Amrein, Cibils, Jensen, Martin, 80's and 90's)

4 Symmetrised time delay

4 Symmetrised time delay

Alternate (symmetrised) definition:

$$
\tau_{\mathrm{r}}(\varphi):=\mathrm{T}_{\mathrm{r}}(\varphi)-\frac{1}{2}\left[\mathrm{~T}_{\mathrm{r}}^{0}(\varphi)+\mathrm{T}_{\mathrm{r}}^{0}(S \varphi)\right]
$$

4 Symmetrised time delay

Alternate (symmetrised) definition:

$$
\tau_{r}(\varphi):=T_{r}(\varphi)-\frac{1}{2}\left[T_{r}^{0}(\varphi)+T_{r}^{0}(S \varphi)\right]
$$

Figure 3: Interpretation of $\tau_{\mathbf{r}}(\varphi)$

For multichannel scattering processes, only the symmetrised time delay exists.

For multichannel scattering processes, only the symmetrised time delay exists.

Some examples where the existence of symmetrised time delay has been established (for $\mathrm{f}=\chi_{\mathcal{B}_{1}}$):

For multichannel scattering processes, only the symmetrised time delay exists.

Some examples where the existence of symmetrised time delay has been established (for $\mathrm{f}=\chi_{\mathcal{B}_{1}}$):

- scattering for dissipative interactions (Martin 75),

For multichannel scattering processes, only the symmetrised time delay exists.

Some examples where the existence of symmetrised time delay has been established (for $\mathrm{f}=\chi_{\mathcal{B}_{1}}$):

- scattering for dissipative interactions (Martin 75),
- "N-body scattering" (Bollé-Osborn 79),

For multichannel scattering processes, only the symmetrised time delay exists.

Some examples where the existence of symmetrised time delay has been established (for $\mathrm{f}=\chi_{\mathcal{B}_{1}}$):

- scattering for dissipative interactions (Martin 75),
- "N-body scattering" (Bollé-Osborn 79),
- scattering in quantum waveguides (TdA 06),

For multichannel scattering processes, only the symmetrised time delay exists.

Some examples where the existence of symmetrised time delay has been established (for $f=\chi_{\mathcal{B}_{1}}$):

- scattering for dissipative interactions (Martin 75),
- "N-body scattering" (Bollé-Osborn 79),
- scattering in quantum waveguides (TdA 06),
- scattering for one-dimensionnal anisotropic potentials (Amrein-Jacquet 07).

Gérard-TdA 06: If $f=\chi_{\Sigma}$ with $\Sigma=-\Sigma, H_{0}=-\Delta$, and H is appropriate, then $\tau_{r}(\varphi)$ exists for each $r>0$, and

$$
\lim _{r \rightarrow \infty} \tau_{r}(\varphi)=\left\langle\varphi, \tau_{E-w} \varphi\right\rangle+(\text { contribution depending on } \partial \Sigma) .
$$

Gérard-TdA 06: If $f=\chi_{\Sigma}$ with $\Sigma=-\Sigma, H_{0}=-\Delta$, and H is appropriate, then $\tau_{r}(\varphi)$ exists for each $r>0$, and

$$
\left.\lim _{r \rightarrow \infty} \tau_{r}(\varphi)=\left\langle\varphi, \tau_{\mathrm{E}-\mathrm{w}} \varphi\right\rangle+\text { (contribution depending on } \partial \Sigma\right)
$$

If $\mathrm{f}=\chi_{\mathcal{B}_{1}}$, the second contribution vanishes, and all the time delays coincide:

$$
\lim _{r \rightarrow \infty} \tau_{r}(\varphi)=\lim _{r \rightarrow \infty} \tau_{r}^{\operatorname{in}}(\varphi)=\left\langle\varphi, \tau_{\mathrm{E}-\mathrm{w}} \varphi\right\rangle
$$

TdA 08 (Friedrichs model): Take $\mathrm{H}_{0}=\mathrm{Q}$ in one dimension, and let H be some appropriate perturbation of H_{0}.

TdA 08 (Friedrichs model): Take $\mathrm{H}_{0}=\mathrm{Q}$ in one dimension, and let H be some appropriate perturbation of H_{0}.

Let $\mathrm{f} \geq 0$ satisfy the following conditions:
(i) f is even.
(ii) f decays to 0 sufficiently fast at infinity.
(iii) $f=1$ on a bounded neighbourhood of 0 .

TdA 08 (Friedrichs model): Take $\mathrm{H}_{0}=\mathrm{Q}$ in one dimension, and let H be some appropriate perturbation of H_{0}.

Let $\mathrm{f} \geq 0$ satisfy the following conditions:
(i) f is even.
(ii) f decays to 0 sufficiently fast at infinity.
(iii) $f=1$ on a bounded neighbourhood of 0 .

Then all the time delays exist and coincide:

$$
\lim _{r \rightarrow \infty} \tau_{r}(\varphi)=\lim _{r \rightarrow \infty} \tau_{r}^{\mathrm{in}}(\varphi)=\left\langle\varphi, \tau_{\mathrm{E}-\mathrm{w}} \varphi\right\rangle
$$

Could we extend the theory in order to get a unified picture of the problem?

5 A class of dispersive Hamiltonians

5 A class of dispersive Hamiltonians

Notation: Given a function $h \in C^{1}\left(\mathbb{R}^{d} ; \mathbb{R}\right)$, we denote by $\kappa(h)$ the set of critical values of h, i.e.

$$
\kappa(h):=\left\{\lambda \in \mathbb{R} \mid \exists x \in \mathbb{R}^{d} \text { such that } h(x)=\lambda \text { and }(\nabla h)(x)=0\right\} .
$$

5 A class of dispersive Hamiltonians

Notation: Given a function $h \in C^{1}\left(\mathbb{R}^{d} ; \mathbb{R}\right)$, we denote by $\kappa(h)$ the set of critical values of h, i.e.

$$
\kappa(h):=\left\{\lambda \in \mathbb{R} \mid \exists x \in \mathbb{R}^{\mathrm{d}} \text { such that } h(x)=\lambda \text { and }(\nabla h)(x)=0\right\} .
$$

- $\kappa(h)$ has measure zero if $h \in C^{d}\left(\mathbb{R}^{d} ; \mathbb{R}\right)$.

5 A class of dispersive Hamiltonians

Notation: Given a function $h \in C^{1}\left(\mathbb{R}^{d} ; \mathbb{R}\right)$, we denote by $\kappa(h)$ the set of critical values of h, i.e.

$$
\kappa(h):=\left\{\lambda \in \mathbb{R} \mid \exists x \in \mathbb{R}^{\mathrm{d}} \text { such that } h(x)=\lambda \text { and }(\nabla h)(x)=0\right\} .
$$

- $\kappa(h)$ has measure zero if $h \in C^{d}\left(\mathbb{R}^{d} ; \mathbb{R}\right)$.
$-\kappa(h)$ is finite if h is a polynomial.

5 A class of dispersive Hamiltonians

Notation: Given a function $h \in C^{1}\left(\mathbb{R}^{d} ; \mathbb{R}\right)$, we denote by $\kappa(h)$ the set of critical values of h, i.e.

$$
\kappa(h):=\left\{\lambda \in \mathbb{R} \mid \exists x \in \mathbb{R}^{d} \text { such that } h(x)=\lambda \text { and }(\nabla h)(x)=0\right\} .
$$

$-\kappa(h)$ has measure zero if $h \in C^{d}\left(\mathbb{R}^{d} ; \mathbb{R}\right)$.
$-K(h)$ is finite if h is a polynomial.

- $\mathrm{K}(\mathrm{h})$ is closed if $|\mathrm{h}(\mathrm{x})| \rightarrow \infty$ as $|\mathrm{x}| \rightarrow \infty$.

We set $H_{0}:=h(P)$, with $P \equiv\left(-i \partial_{1}, \ldots,-i \partial_{d}\right)$ the momentum operator in \mathcal{H}.

We set $\mathrm{H}_{0}:=\mathrm{h}(\mathrm{P})$, with $\mathrm{P} \equiv\left(-\mathfrak{i} \partial_{1}, \ldots,-\mathfrak{i} \partial_{\mathrm{d}}\right)$ the momentum operator in \mathcal{H}.

Assumption (hypoelliptic-type): The function $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is of class C^{m} for some $m \geq 3$, and satisfies the following conditions:
(i) $|h(x)| \rightarrow \infty$ as $|x| \rightarrow \infty$.
(ii) $\sum_{|\alpha| \leq m}\left|\left(\partial^{\alpha} h\right)(x)\right| \leq$ Const. $(1+|h(x)|)$.
(iii) $\sum_{|\alpha|=m}\left|\left(\partial^{\alpha} h\right)(x)\right| \leq$ Const.

We set $\mathrm{H}_{0}:=\mathrm{h}(\mathrm{P})$, with $\mathrm{P} \equiv\left(-\mathfrak{i} \partial_{1}, \ldots,-\mathfrak{i} \partial_{\mathrm{d}}\right)$ the momentum operator in \mathcal{H}.

Assumption (hypoelliptic-type): The function $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is of class C^{m} for some $m \geq 3$, and satisfies the following conditions:
(i) $|h(x)| \rightarrow \infty$ as $|x| \rightarrow \infty$.
(ii) $\sum_{|\alpha| \leq m}\left|\left(\partial^{\alpha} h\right)(x)\right| \leq$ Const. $(1+|h(x)|)$.
(iii) $\sum_{|\alpha|=m}\left|\left(\partial^{\alpha} h\right)(x)\right| \leq$ Const.
H_{0} has purely absolutely continuous spectrum in $\mathbb{R} \backslash \kappa(h)$.

We set $\mathrm{H}_{0}:=h(\mathrm{P})$, with $\mathrm{P} \equiv\left(-i \partial_{1}, \ldots,-i \partial_{\mathrm{d}}\right)$ the momentum operator in \mathcal{H}.

Assumption (hypoelliptic-type): The function $h: \mathbb{R}^{d} \rightarrow \mathbb{R}$ is of class C^{m} for some $m \geq 3$, and satisfies the following conditions:
(i) $|\mathrm{h}(\mathrm{x})| \rightarrow \infty$ as $|\mathrm{x}| \rightarrow \infty$.
(ii) $\sum_{|\alpha| \leq m}\left|\left(\partial^{\alpha} h\right)(x)\right| \leq$ Const. $(1+|h(x)|)$.
(iii) $\sum_{|\alpha|=m}\left|\left(\partial^{\alpha} h\right)(x)\right| \leq$ Const.
H_{0} has purely absolutely continuous spectrum in $\mathbb{R} \backslash \kappa(h)$.
Example: h can be an elliptic symbol of degree $s>0$, i.e. $h \in C^{\infty}\left(\mathbb{R}^{\mathrm{d}} ; \mathbb{R}\right),\left|\left(\partial^{\alpha} h\right)(x)\right| \leq \mathrm{C}_{\alpha}\langle x\rangle^{s-|\alpha|}$ for each multi-index α, and $|h(x)| \geq \mathrm{c}|x|^{s}$, for some $\mathrm{c}>0$, outside a compact set.

6 Averaged localization functions

6 Averaged localization functions

Take a function $f \in L^{\infty}\left(\mathbb{R}^{d}\right)$ decaying to 0 sufficiently fast at infinity such that $\mathrm{f}=1$ on a bounded neighbourhood of 0 .

6 Averaged localization functions

Take a function $f \in L^{\infty}\left(\mathbb{R}^{d}\right)$ decaying to 0 sufficiently fast at infinity such that $f=1$ on a bounded neighbourhood of 0 .

Then the function $R_{f}: \mathbb{R}^{d} \backslash\{0\} \rightarrow \mathbb{C}$ given by

$$
R_{f}(x):=\int_{0}^{+\infty} \frac{d \mu}{\mu}\left[f(\mu x)-\chi_{[0,1]}(\mu)\right]
$$

is well-defined.

6 Averaged localization functions

Take a function $f \in L^{\infty}\left(\mathbb{R}^{d}\right)$ decaying to 0 sufficiently fast at infinity such that $f=1$ on a bounded neighbourhood of 0 .

Then the function $R_{f}: \mathbb{R}^{d} \backslash\{0\} \rightarrow \mathbb{C}$ given by

$$
R_{f}(x):=\int_{0}^{+\infty} \frac{d \mu}{\mu}\left[f(\mu x)-\chi_{[0,1]}(\mu)\right]
$$

is well-defined.

Example: If f is radial, i.e. $f(x)=f_{0}(|x|)$ for a.e. $x \in \mathbb{R}^{d}$, then

$$
R_{f}(x)=R_{f_{0}}(1)-\ln |x|,
$$

and

$$
\left(\nabla R_{f}\right)(x)=-x^{-2} x .
$$

Theorem: Suppose that $f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ is even and satisfies $f=1$ on a bounded neighbourhood of 0 . Let h be as above. Then there exists a dense set of vectors φ such that

$$
\begin{aligned}
& \lim _{r \rightarrow \infty} \int_{0}^{\infty} d t\left\langle\varphi,\left[\mathrm{e}^{i \operatorname{th}(\mathrm{P})} f(\mathrm{Q} / \mathrm{r}) \mathrm{e}^{-i \operatorname{th}(\mathrm{P})}-\mathrm{e}^{-\mathrm{ith}(\mathrm{P})} \mathrm{f}(\mathrm{Q} / \mathrm{r}) \mathrm{e}^{\mathrm{ith}(\mathrm{P})}\right] \varphi\right\rangle \\
& =\left\langle\varphi, \mathcal{A}_{\mathrm{f}} \varphi\right\rangle,
\end{aligned}
$$

where

$$
A_{f}:=Q \cdot\left(\nabla R_{f}\right)[(\nabla h)(P)]+\left(\nabla R_{f}\right)[(\nabla h)(P)] \cdot Q
$$

Remark: If f is radial, A_{f} reduces to the operator

$$
A:=-\left(\mathrm{Q} \cdot \frac{(\nabla \mathrm{~h})(\mathrm{P})}{(\nabla \mathrm{Fh})(\mathrm{P})^{2}}+\frac{(\nabla \mathrm{Vh})(\mathrm{P})}{(\nabla \mathrm{Ph})(\mathrm{P})^{2}} \cdot \mathrm{Q}\right) .
$$

Remark: If f is radial, \mathcal{A}_{f} reduces to the operator

$$
A:=-\left(\mathrm{Q} \cdot \frac{(\nabla \mathrm{~h})(\mathrm{P})}{(\nabla \mathrm{Fh})(\mathrm{P})^{2}}+\frac{(\nabla \mathrm{Vh})(\mathrm{P})}{(\nabla \mathrm{Ph})(\mathrm{P})^{2}} \cdot \mathrm{Q}\right) .
$$

Formally, one has

$$
\left[A, e^{i t h(P)}\right]=2 \operatorname{te}^{i \operatorname{th}(P)} \quad \Longrightarrow \quad A=-2 i \frac{d}{d h(P)} .
$$

Remark: If f is radial, A_{f} reduces to the operator

$$
A:=-\left(\mathrm{Q} \cdot \frac{(\nabla \mathrm{~h})(\mathrm{P})}{(\nabla \mathrm{Fh})(\mathrm{P})^{2}}+\frac{(\nabla \mathrm{Vh})(\mathrm{P})}{(\nabla \mathrm{Ph})(\mathrm{P})^{2}} \cdot \mathrm{Q}\right) .
$$

Formally, one has

$$
\left[A, e^{i t h(P)}\right]=2 \operatorname{te}^{i \operatorname{th}(P)} \quad \Longrightarrow \quad A=-2 i \frac{d}{d h(P)} .
$$

Hence, if f is radial and H_{0} has purely absolutely continuous spectrum, the theorem gives

$$
\begin{aligned}
& \lim _{r \rightarrow \infty} \int_{0}^{\infty} \mathrm{dt}\left\langle\varphi,\left[\mathrm{e}^{\mathrm{ith}(\mathrm{P})} f(\mathrm{Q} / \mathrm{r}) \mathrm{e}^{-i \operatorname{th}(\mathrm{P})}-\mathrm{e}^{-\mathrm{ith}(\mathrm{P})} f(\mathrm{Q} / \mathrm{r}) \mathrm{e}^{\mathrm{ith}(\mathrm{P})}\right] \varphi\right\rangle \\
& =\int_{\sigma\left(\mathrm{H}_{0}\right)} \mathrm{d} \lambda\left\langle(\mathcal{U} \varphi)(\lambda),-2 i \frac{\mathrm{~d}(\mathcal{U} \varphi)}{\mathrm{d} \lambda}(\lambda)\right\rangle_{\mathcal{H}_{\lambda}},
\end{aligned}
$$

where $\mathcal{U}: \mathcal{H} \rightarrow \int_{\sigma\left(H_{0}\right)} \mathrm{d} \lambda \mathcal{H}_{\lambda}$ is a spectral transformation for $\mathrm{H}_{0}=\mathrm{h}(\mathrm{P})$.

7 Existence of symmetrised time delay

7 Existence of symmetrised time delay

Let H be any selfadjoint perturbation of $\mathrm{H}_{0}=h(\mathrm{P})$ satisfying the following condition.

Assumption $W_{ \pm}$: The wave operators $W_{ \pm}$exist and are complete, and any operator $\mathrm{T} \in \mathcal{B}\left(\mathcal{D}\left(\langle\mathrm{Q}\rangle^{-\rho}\right), \mathcal{H}\right)$, with $\rho>\frac{1}{2}$, is locally H-smooth on $\mathbb{R} \backslash\left\{\kappa(h) \cup \sigma_{\mathrm{pp}}(\mathrm{H})\right\}$.

Theorem: Let $\mathrm{f} \geq 0$ be an even function in $\mathcal{S}\left(\mathbb{R}^{\mathrm{d}}\right)$ such that $\mathrm{f}=1$ on a bounded neighbourhood of 0 . Let h be as above. Suppose that Assumption $W_{ \pm}$holds. Then, if φ satisfies some technical conditions, one has

$$
\lim _{r \rightarrow \infty} \tau_{r}(\varphi)=\frac{1}{2}\left\langle\varphi, S^{*}\left[A_{f}, S\right] \varphi\right\rangle
$$

Theorem: Let $f \geq 0$ be an even function in $\mathcal{S}\left(\mathbb{R}^{d}\right)$ such that $f=1$ on a bounded neighbourhood of 0 . Let h be as above. Suppose that Assumption $W_{ \pm}$holds. Then, if φ satisfies some technical conditions, one has

$$
\lim _{r \rightarrow \infty} \tau_{r}(\varphi)=\frac{1}{2}\left\langle\varphi, S^{*}\left[A_{f}, S\right] \varphi\right\rangle
$$

Remark 1: If f is radial and H_{0} has purely absolutely continuous spectrum, we get the identity of symmetrised time delay and Eisenbud-Wigner time delay for dispersive Hamiltonians $H_{0}=h(P)$:

$$
\lim _{r \rightarrow \infty} \tau_{\mathrm{r}}(\varphi)=\int_{\sigma\left(\mathrm{H}_{0}\right)} \mathrm{d} \lambda\left\langle(\mathcal{U} \varphi)(\lambda),-\mathrm{i} S(\lambda)^{*} \frac{\mathrm{dS}(\lambda)}{\mathrm{d} \lambda}(\mathcal{U} \varphi)(\lambda)\right\rangle_{\mathcal{H}_{\lambda}}
$$

Remark 2: One can always write the symmetrised time delay as the sum of the contribution of the radial component of the localization function f (Eisenbud-Wigner) and the contribution of the non-radial component of f :

$$
\lim _{r \rightarrow \infty} \tau_{r}(\varphi)=\frac{1}{2}\left\langle\varphi, S^{*}[A, S] \varphi\right\rangle+\frac{1}{2}\left\langle\varphi, S^{*}\left[\widetilde{\mathcal{A}_{f}}, S\right] \varphi\right\rangle
$$

where $\widetilde{A_{f}}=A_{f}-A$.

Remark 2: One can always write the symmetrised time delay as the sum of the contribution of the radial component of the localization function f (Eisenbud-Wigner) and the contribution of the non-radial component of f :

$$
\lim _{r \rightarrow \infty} \tau_{r}(\varphi)=\frac{1}{2}\left\langle\varphi, S^{*}[A, S] \varphi\right\rangle+\frac{1}{2}\left\langle\varphi, S^{*}\left[\widetilde{\mathcal{A}_{f}}, S\right] \varphi\right\rangle
$$

where $\widetilde{A_{f}}=A_{f}-A$.

Remark 3: Appart technical conditions, we only need to suppose that the localization function f is even to get the existence of symetrised time delay.

8 Equality of symmetrised time delay and usual time delay

8 Equality of symmetrised time delay and usual time delay

Let $\mathrm{F}_{\mathrm{f}}: \mathbb{R}^{\mathrm{d}} \backslash\{0\} \rightarrow \mathbb{C}$ be defined by

$$
\mathrm{F}_{\mathrm{f}}(\mathrm{x}):=\int_{\mathbb{R}} \mathrm{d} \mu \mathrm{f}(\mu \mathrm{x}) .
$$

8 Equality of symmetrised time delay and usual time delay

Let $F_{f}: \mathbb{R}^{d} \backslash\{0\} \rightarrow \mathbb{C}$ be defined by

$$
F_{f}(x):=\int_{\mathbb{R}} d \mu f(\mu x) .
$$

If $p \in \mathbb{R}^{d}$ and f is real, the number $F_{f}(p) \equiv \int_{\mathbb{R}} d t f(t p)$ can be seen as the sojourn time in the region defined by the localization function f of a free classical particle moving along the trajectory $\mathbb{R} \ni \mathrm{t} \mapsto \mathrm{x}(\mathrm{t}):=\mathrm{tp}$.

8 Equality of symmetrised time delay and usual time delay

Let $F_{f}: \mathbb{R}^{d} \backslash\{0\} \rightarrow \mathbb{C}$ be defined by

$$
F_{f}(x):=\int_{\mathbb{R}} d \mu f(\mu x) .
$$

If $p \in \mathbb{R}^{d}$ and f is real, the number $F_{f}(p) \equiv \int_{\mathbb{R}} d t f(t p)$ can be seen as the sojourn time in the region defined by the localization function f of a free classical particle moving along the trajectory $\mathbb{R} \ni \mathrm{t} \mapsto \mathrm{x}(\mathrm{t}):=\mathrm{t} p$.
$F_{f}[(\nabla h)(P)]$ is a "quantum analog" of $F_{f}(p)$, since $(\nabla h)(P)$ is the quantum velocity operator.

Theorem: Let $f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ be even. Let h be as above. Suppose that Assumption $W_{ \pm}$holds. Assume that

$$
\begin{equation*}
\left[\mathrm{F}_{\mathrm{f}}[(\nabla \mathrm{~h})(\mathrm{P})], \mathrm{S}\right]=0 . \tag{1}
\end{equation*}
$$

Then, if φ satisfies some technical conditions, one has

$$
\lim _{r \rightarrow \infty}\left[T_{r}^{0}(S \varphi)-T_{r}^{0}(\varphi)\right]=0 .
$$

Theorem: Let $f \in \mathcal{S}\left(\mathbb{R}^{d}\right)$ be even. Let h be as above. Suppose that Assumption $W_{ \pm}$holds. Assume that

$$
\begin{equation*}
\left[\mathrm{F}_{\mathrm{f}}[(\nabla \mathrm{~h})(\mathrm{P})], \mathrm{S}\right]=0 . \tag{1}
\end{equation*}
$$

Then, if φ satisfies some technical conditions, one has

$$
\lim _{r \rightarrow \infty}\left[T_{r}^{0}(S \varphi)-T_{r}^{0}(\varphi)\right]=0 .
$$

In particular, time delay and symmetrized time delay satisfy

$$
\lim _{r \rightarrow \infty}\left[\tau_{r}^{\operatorname{in}}(\varphi)-\tau_{r}(\varphi)\right]=0
$$

Sketch of the proof:

Sketch of the proof:

Using the change of variables $\mu:=t / r, v:=1 / r$, and the parity of f , one gets

$$
\begin{aligned}
& \lim _{r \rightarrow \infty}\left[T_{r}^{0}(S \varphi)-T_{r}^{0}(\varphi)\right] \\
& =\lim _{r \rightarrow \infty} \int_{\mathbb{R}} d t\left\langle\varphi, S^{*}\left[e^{i \operatorname{th}(P)} f(Q / r) e^{-i \operatorname{th}(P)}, S\right] \varphi\right\rangle
\end{aligned}
$$

Sketch of the proof:

Using the change of variables $\mu:=\mathrm{t} / \mathrm{r}, v:=1 / \mathrm{r}$, and the parity of f , one gets

$$
\begin{aligned}
\lim _{r \rightarrow \infty} & {\left[T_{r}^{0}(S \varphi)-T_{r}^{0}(\varphi)\right] } \\
= & \lim _{r \rightarrow \infty} \int_{\mathbb{R}} d t\left\langle\varphi, S^{*}\left[e^{i \operatorname{th}(P)} f(Q / r) e^{-i t h(P)}, S\right] \varphi\right\rangle \\
= & \lim _{r \rightarrow \infty} \int_{\mathbb{R}} d t\left\langle\varphi, S^{*}\left[e^{i t h(P)} f(Q / r) e^{-i t h(P)}, S\right] \varphi\right\rangle \\
& \quad-\left\langle\varphi, S^{*}\left[F_{f}[(\nabla h)(P)], S\right] \varphi\right\rangle
\end{aligned}
$$

Sketch of the proof:

Using the change of variables $\mu:=t / r, v:=1 / r$, and the parity of f , one gets

$$
\begin{aligned}
& \lim _{r \rightarrow \infty} {\left[T_{r}^{0}(S \varphi)-T_{r}^{0}(\varphi)\right] } \\
&= \lim _{r \rightarrow \infty} \int_{\mathbb{R}} \mathrm{dt}\left\langle\varphi, S^{*}\left[\mathrm{e}^{\mathrm{ith}(\mathrm{P})} \mathrm{f}(\mathrm{Q} / \mathrm{r}) \mathrm{e}^{-\mathrm{ith}(\mathrm{P})}, \mathrm{S}\right] \varphi\right\rangle \\
&=\lim _{r \rightarrow \infty} \int_{\mathbb{R}} \mathrm{dt}\left\langle\varphi, S^{*}\left[\mathrm{e}^{i \mathrm{th}(\mathrm{P})} \mathrm{f}(\mathrm{Q} / \mathrm{r}) \mathrm{e}^{-\mathrm{ith}(\mathrm{P})}, \mathrm{S}\right] \varphi\right\rangle \\
& \quad-\left\langle\varphi, S^{*}\left[\mathrm{~F}_{\mathrm{f}}[(\nabla \mathrm{~h})(\mathrm{P})], \mathrm{S}\right] \varphi\right\rangle \\
&=\lim _{v \searrow 0} \int_{\mathbb{R}} \mathrm{d} \mu\left\langle\varphi, S^{*}\left[\frac{1}{v}\{\mathrm{f}[v \mathrm{Q}+\mu(\nabla h)(\mathrm{P})]-\mathrm{f}[\mu(\nabla \mathrm{~h})(\mathrm{P})]\}, \mathrm{S}\right] \varphi\right\rangle
\end{aligned}
$$

Sketch of the proof:

Using the change of variables $\mu:=\mathrm{t} / \mathrm{r}, v:=1 / \mathrm{r}$, and the parity of f , one gets

$$
\begin{aligned}
& \lim _{r \rightarrow \infty} {\left[T_{r}^{0}(\mathrm{~S} \varphi)-\mathrm{T}_{\mathrm{r}}^{0}(\varphi)\right] } \\
&= \lim _{r \rightarrow \infty} \int_{\mathbb{R}} \mathrm{dt}\left\langle\varphi, \mathrm{~S}^{*}\left[\mathrm{e}^{\mathrm{ith}(\mathrm{P})} \mathrm{f}(\mathrm{Q} / \mathrm{r}) \mathrm{e}^{-\mathrm{ith}(\mathrm{P})}, \mathrm{S}\right] \varphi\right\rangle \\
&=\lim _{r \rightarrow \infty} \int_{\mathbb{R}} \mathrm{dt}\left\langle\varphi, \mathrm{~S}^{*}\left[\mathrm{e}^{\mathrm{ith}(\mathrm{P})} \mathrm{f}(\mathrm{Q} / \mathrm{r}) \mathrm{e}^{-\mathrm{ith}(\mathrm{P})}, \mathrm{S}\right] \varphi\right\rangle \\
&-\left\langle\varphi, S^{*}\left[\mathrm{~F}_{\mathrm{f}}[(\nabla \mathrm{Dh})(\mathrm{P})], \mathrm{S}\right] \varphi\right\rangle \\
&=\lim _{v \searrow 0} \int_{\mathbb{R}} \mathrm{d} \mu\left\langle\varphi, \mathrm{~S}^{*}\left[\frac{1}{v}\{\mathrm{f}[v \mathrm{Q}+\mu(\nabla \mathrm{h})(\mathrm{P})]-\mathrm{f}[\mu(\nabla \mathrm{~h})(\mathrm{P})]\}, \mathrm{S}\right] \varphi\right\rangle \\
&= \int_{\mathbb{R}} \mathrm{d} \mu\left\langle\varphi, S^{*}[\mathrm{Q} \cdot(\nabla \mathrm{f})[\mu(\nabla \mathrm{h})(\mathrm{P})], \mathrm{S}] \varphi\right\rangle
\end{aligned}
$$

Sketch of the proof:

Using the change of variables $\mu:=t / r, v:=1 / r$, and the parity of f , one gets

$$
\begin{aligned}
& \lim _{r \rightarrow \infty}\left[T_{r}^{0}(S \varphi)-\mathrm{T}_{\mathrm{r}}^{0}(\varphi)\right] \\
& =\lim _{r \rightarrow \infty} \int_{\mathbb{R}} \mathrm{dt}\left\langle\varphi, \mathrm{~S}^{*}\left[\mathrm{e}^{\mathfrak{i t h}(\mathrm{P})} \mathrm{f}(\mathrm{Q} / \mathrm{r}) \mathrm{e}^{-\mathrm{ith}(\mathrm{P})}, \mathrm{S}\right] \varphi\right\rangle \\
& =\lim _{r \rightarrow \infty} \int_{\mathbb{R}} \mathrm{dt}\left\langle\varphi, \mathrm{~S}^{*}\left[\mathrm{e}^{\mathfrak{i t h}(\mathrm{P})} \mathrm{f}(\mathrm{Q} / \mathrm{r}) \mathrm{e}^{-\mathrm{ith}(\mathrm{P})}, \mathrm{S}\right] \varphi\right\rangle \\
& -\left\langle\varphi, S^{*}\left[\mathrm{~F}_{\mathrm{f}}[(\nabla \mathrm{~h})(\mathrm{P})], \mathrm{S}\right] \varphi\right\rangle \\
& =\lim _{v \searrow 0} \int_{\mathbb{R}} \mathrm{d} \mu\left\langle\varphi, S^{*}\left[\frac{1}{v}\{\mathrm{f}[v \mathrm{Q}+\mu(\nabla \mathrm{h})(\mathrm{P})]-\mathrm{f}[\mu(\nabla \mathrm{~h})(\mathrm{P})]\}, \mathrm{S}\right] \varphi\right\rangle \\
& =\int_{\mathbb{R}} \mathrm{d} \mu\left\langle\varphi, \mathrm{~S}^{*}[\mathrm{Q} \cdot(\nabla \mathrm{f})[\mu(\nabla \mathrm{h})(\mathrm{P})], \mathrm{S}] \varphi\right\rangle \\
& =0 \text {. }
\end{aligned}
$$

There are (at least) two situations where condition (1) is satisfied:

There are (at least) two situations where condition (1) is satisfied:

- Let h be a polynomial of degree 1, i.e. $h(x)=v_{0}+v \cdot x$ for some $v_{0} \in \mathbb{R}, v \in \mathbb{R}^{\mathrm{d}} \backslash\{0\}$. Then $\mathrm{F}_{\mathrm{f}}[(\nabla h)(\mathrm{P})]$ reduces to the scalar $\mathrm{F}_{\mathrm{f}}(v)$, and thus it commutes with S.

There are (at least) two situations where condition (1) is satisfied:

- Let h be a polynomial of degree 1 , i.e. $h(x)=v_{0}+v \cdot x$ for some $v_{0} \in \mathbb{R}, v \in \mathbb{R}^{\mathrm{d}} \backslash\{0\}$. Then $\mathrm{F}_{\mathrm{f}}[(\nabla h)(\mathrm{P})]$ reduces to the scalar $\mathrm{F}_{\mathrm{f}}(v)$, and thus it commutes with S.
(This covers the case of the Friedrichs Hamiltonian.)

There are (at least) two situations where condition (1) is satisfied:

- Let h be a polynomial of degree 1 , i.e. $h(x)=v_{0}+v \cdot x$ for some $v_{0} \in \mathbb{R}, v \in \mathbb{R}^{\mathrm{d}} \backslash\{0\}$. Then $\mathrm{F}_{\mathrm{f}}[(\nabla h)(\mathrm{P})]$ reduces to the scalar $\mathrm{F}_{\mathrm{f}}(v)$, and thus it commutes with S.
(This covers the case of the Friedrichs Hamiltonian.)
- Suppose that f and h are radial, i.e. $f(x)=f_{0}(|x|)$ and $h(x)=h_{0}(|x|)$ with, say, $h_{0}^{\prime} \geq 0$ on \mathbb{R}_{+}. Then $\mathrm{F}_{\mathrm{f}}[(\nabla \mathrm{h})(\mathrm{P})]=\mathrm{F}_{\mathrm{f}}\left(\mathrm{h}_{0}^{\prime}(|\mathrm{P}|)\right)$ is diagonalizable in the spectral representation of $H_{0} \equiv h(P)$. So it commutes with S.

There are (at least) two situations where condition (1) is satisfied:

- Let h be a polynomial of degree 1 , i.e. $h(x)=v_{0}+v \cdot x$ for some $v_{0} \in \mathbb{R}, v \in \mathbb{R}^{\mathrm{d}} \backslash\{0\}$. Then $\mathrm{F}_{\mathrm{f}}[(\nabla h)(\mathrm{P})]$ reduces to the scalar $\mathrm{F}_{\mathrm{f}}(v)$, and thus it commutes with S.
(This covers the case of the Friedrichs Hamiltonian.)
- Suppose that f and h are radial, i.e. $f(x)=f_{0}(|x|)$ and $h(x)=h_{0}(|x|)$ with, say, $h_{0}^{\prime} \geq 0$ on \mathbb{R}_{+}. Then $\mathrm{F}_{\mathrm{f}}[(\nabla \mathrm{h})(\mathrm{P})]=\mathrm{F}_{\mathrm{f}}\left(\mathrm{h}_{0}^{\prime}(|\mathrm{P}|)\right)$ is diagonalizable in the spectral representation of $H_{0} \equiv h(P)$. So it commutes with S.
(This covers the Schrödinger case $h_{0}(\rho)=\rho^{2}$, the square-root Klein-Gordon case $h_{0}(\rho)=\sqrt{1+\rho^{2}}$, and many others.)

9 Existence of usual time delay

9 Existence of usual time delay

Theorem: Let $\mathrm{f} \geq 0$ be an even function in $\mathcal{S}\left(\mathbb{R}^{\mathrm{d}}\right)$ such that $\mathrm{f}=1$ on a bounded neighbourhood of 0 . Let h be as above. Suppose that Assumption $W_{ \pm}$holds. Assume that

$$
\left[\mathrm{F}_{\mathrm{f}}[(\nabla \mathrm{~h})(\mathrm{P})], \mathrm{S}\right]=0 .
$$

Then, if φ satisfies some technical conditions, one has

$$
\lim _{r \rightarrow \infty} \tau_{r}^{\operatorname{in}}(\varphi)=\lim _{r \rightarrow \infty} \tau_{r}(\varphi)=\frac{1}{2}\left\langle\varphi, S^{*}\left[A_{f}, S\right] \varphi\right\rangle
$$

10 Some references

- Amrein, W. O. and Jacquet, Ph. Time delay for one-dimensional quantum systems with steplike potentials. Phys. Rev. A, 2007.
- Amrein, W. O. and Sinha, K. B. Time delay and resonances in potential scattering. J. Phys. A, 2006.
- Gérard, C. and Tiedra de Aldecoa, R. Generalized definition of time delay in scattering theory. J. Math. Phys., 2007.
- Tiedra de Aldecoa, R. Time delay for dispersive systems in quantum scattering theory. I. The Friedrichs model Preprint on arXiv

