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1 Two-body scattering in R
d

• Hilbert space H := L2(Rd)

• Free Hamiltonian H0 with purely absolutely continuous
spectrum σ(H0) (for instance H0 := −Δ)

• Full Hamiltonian H (typically H = H0 + V)

• Complete wave operators, i.e.

W± := s- lim
t→±∞ eitHe−itH0

with Ran(W−) = Ran(W+) = Hac(H)

• Scattering operator
S := W∗

+W−

(unitarity)
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S

t → +∞

W−ϕ

t → −∞
W−

e−itHW−ϕ

e−itH0ϕ ϕ

Sϕ
W+

e−itH0Sϕ

Figure 1: Wave operators W± and scattering operator S
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There exist Hilbert spaces Hλ, λ ∈ σ(H0), and a unitary
transformation

U : H → ∫⊕

σ(H0)

dλHλ

such that

UH0U−1 =

∫⊕

σ(H0)

dλ λ.
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exist unitary operators S(λ) in Hλ such that
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There exist Hilbert spaces Hλ, λ ∈ σ(H0), and a unitary
transformation

U : H → ∫⊕

σ(H0)

dλHλ

such that

UH0U−1 =

∫⊕

σ(H0)

dλ λ.

S is decomposable in the spectral representation of H0, i.e. there
exist unitary operators S(λ) in Hλ such that

USU−1 =

∫⊕

σ(H0)

dλ S(λ).

The collection {S(λ)}, λ ∈ σ(H0), is the scattering matrix.
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2 Stationary approach to time delay:

Eisenbud-Wigner formula

• {S(λ)}λ≥0, scattering matrix for H0 = −Δ and H = H0 + V,
with V radial

Heuristically, the time delay of an outcoming radial wave packet
with respect to the associated free incoming wave packet (peaked
around the kinetic energy λ) is given by derivative of the phase
shift:

τ(λ) = −iS(λ)∗
dS(λ)

dλ

(Eisenbud-Wigner time delay, 60’s)
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3 Time delay in terms of sojourn times

Take a function f ∈ L∞ (Rd) decaying to 0 at infinity such that
f = 1 on a bounded neighbourhood Σ of 0. Let Q ≡ (Q1, . . . , Qd)

be the vector position operator in H.

=⇒ f(Q/r), r > 0, is (approximately) the operator of localization in
the dilated region Σr := rΣ of R

d.

Example: f(Q/r) is the (exact) localization operator in
Br := {x ∈ Rd | |x| < r} if f = χB1

.
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Let ϕ ∈ H be an appropriate normalised scattering state.

• Sojourn time of the freely evolving state e−itH0ϕ in Σr:

T0
r (ϕ) :=

∫
R

dt
〈
e−itH0ϕ, f(Q/r)e−itH0ϕ

〉
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Let ϕ ∈ H be an appropriate normalised scattering state.

• Sojourn time of the freely evolving state e−itH0ϕ in Σr:

T0
r (ϕ) :=

∫
R

dt
〈
e−itH0ϕ, f(Q/r)e−itH0ϕ

〉

• Sojourn time of the associated scattering state e−itHW−ϕ in
Σr:

Tr(ϕ) :=

∫
R

dt
〈
e−itHW−ϕ, f(Q/r)e−itHW−ϕ

〉
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Time delay for the scattering process with incoming state ϕ in Σr:

τin
r (ϕ) := Tr(ϕ) − T0

r (ϕ).
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Time delay for the scattering process with incoming state ϕ in Σr:

τin
r (ϕ) := Tr(ϕ) − T0

r (ϕ).

(definition introduced by Jauch, Misra, and Sinha in the 70’s, when
f = χB1

and H0 = −Δ)
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S

t → +∞

t → −∞
W−

e−itH0ϕ

W−ϕ
Sϕ

W+

ϕ

e−itH0Sϕ

e−itHW−ϕ

Figure 2: Interpretation of τin
r (ϕ)
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If f = χB1
, H0 = −Δ, and H is appropriate, τin

r (ϕ) exists for each
r > 0, and

lim
r→∞ τin

r (ϕ) =

∫∞
0

dλ
〈
(Uϕ)(λ), −iS(λ)∗

(dS(λ)
dλ

)
(Uϕ)(λ)

〉
L2(Sd−1)

≡ 〈ϕ, τe-wϕ〉 .
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If f = χB1
, H0 = −Δ, and H is appropriate, τin

r (ϕ) exists for each
r > 0, and

lim
r→∞ τin

r (ϕ) =

∫∞
0

dλ
〈
(Uϕ)(λ), −iS(λ)∗

(dS(λ)
dλ

)
(Uϕ)(λ)

〉
L2(Sd−1)

≡ 〈ϕ, τe-wϕ〉 .

This formula expresses the identity of time delay (defined in terms
of sojourn times) and Eisenbud-Wigner time delay.
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If f = χB1
, H0 = −Δ, and H is appropriate, τin

r (ϕ) exists for each
r > 0, and

lim
r→∞ τin

r (ϕ) =

∫∞
0

dλ
〈
(Uϕ)(λ), −iS(λ)∗

(dS(λ)
dλ

)
(Uϕ)(λ)

〉
L2(Sd−1)

≡ 〈ϕ, τe-wϕ〉 .

This formula expresses the identity of time delay (defined in terms
of sojourn times) and Eisenbud-Wigner time delay.

(Amrein, Cibils, Jensen, Martin, 80’s and 90’s)
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τr(ϕ) := Tr(ϕ) − 1
2

[
T0

r (ϕ) + T0
r (Sϕ)

]
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4 Symmetrised time delay

Alternate (symmetrised) definition:

τr(ϕ) := Tr(ϕ) − 1
2

[
T0

r (ϕ) + T0
r (Sϕ)

]

t → +∞

t → −∞

e−itH0Sϕ

e−itH0ϕ

e−itHW−ϕ

Figure 3: Interpretation of τr(ϕ)
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For multichannel scattering processes, only the symmetrised time
delay exists.

Some examples where the existence of symmetrised time delay has
been established (for f = χB1

):

• scattering for dissipative interactions (Martin 75),

• “N-body scattering” (Bollé-Osborn 79),

• scattering in quantum waveguides (TdA 06),

• scattering for one-dimensionnal anisotropic potentials
(Amrein-Jacquet 07).
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Gérard-TdA 06: If f = χΣ with Σ = −Σ, H0 = −Δ, and H is
appropriate, then τr(ϕ) exists for each r > 0, and

lim
r→∞ τr(ϕ) = 〈ϕ, τe-wϕ〉 + (contribution depending on ∂Σ).
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Gérard-TdA 06: If f = χΣ with Σ = −Σ, H0 = −Δ, and H is
appropriate, then τr(ϕ) exists for each r > 0, and

lim
r→∞ τr(ϕ) = 〈ϕ, τe-wϕ〉 + (contribution depending on ∂Σ).

If f = χB1
, the second contribution vanishes, and all the time

delays coincide:

lim
r→∞ τr(ϕ) = lim

r→∞ τin
r (ϕ) = 〈ϕ, τe-wϕ〉 .



14/29

TdA 08 (Friedrichs model): Take H0 = Q in one dimension,
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Let f ≥ 0 satisfy the following conditions:

(i) f is even.

(ii) f decays to 0 sufficiently fast at infinity.

(iii) f = 1 on a bounded neighbourhood of 0.
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TdA 08 (Friedrichs model): Take H0 = Q in one dimension,
and let H be some appropriate perturbation of H0.

Let f ≥ 0 satisfy the following conditions:

(i) f is even.

(ii) f decays to 0 sufficiently fast at infinity.

(iii) f = 1 on a bounded neighbourhood of 0.

Then all the time delays exist and coincide:

lim
r→∞ τr(ϕ) = lim

r→∞ τin
r (ϕ) = 〈ϕ, τe-wϕ〉 .
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Could we extend the theory in order to get a
unified picture of the problem?
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set of critical values of h, i.e.

κ(h) := {λ ∈ R | ∃x ∈ R
d such that h(x) = λ and (∇h)(x) = 0}.
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5 A class of dispersive Hamiltonians

Notation: Given a function h ∈ C1(Rd; R), we denote by κ(h) the
set of critical values of h, i.e.

κ(h) := {λ ∈ R | ∃x ∈ R
d such that h(x) = λ and (∇h)(x) = 0}.

- κ(h) has measure zero if h ∈ Cd(Rd; R).

- κ(h) is finite if h is a polynomial.

- κ(h) is closed if |h(x)| → ∞ as |x| → ∞.
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We set H0 := h(P), with P ≡ (−i∂1, . . . , −i∂d) the momentum
operator in H.

Assumption (hypoelliptic-type): The function h : Rd → R is of
class Cm for some m ≥ 3, and satisfies the following conditions:

(i) |h(x)| → ∞ as |x| → ∞.

(ii)
∑

|α|≤m |(∂αh)(x)| ≤ Const.(1 + |h(x)|).

(iii)
∑

|α|=m |(∂αh)(x)| ≤ Const.
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We set H0 := h(P), with P ≡ (−i∂1, . . . , −i∂d) the momentum
operator in H.

Assumption (hypoelliptic-type): The function h : Rd → R is of
class Cm for some m ≥ 3, and satisfies the following conditions:

(i) |h(x)| → ∞ as |x| → ∞.

(ii)
∑

|α|≤m |(∂αh)(x)| ≤ Const.(1 + |h(x)|).

(iii)
∑

|α|=m |(∂αh)(x)| ≤ Const.

H0 has purely absolutely continuous spectrum in R \ κ(h).

Example: h can be an elliptic symbol of degree s > 0,
i.e. h ∈ C∞ (Rd; R), |(∂αh)(x)| ≤ cα〈x〉s−|α| for each multi-index α,
and |h(x)| ≥ c |x|s, for some c > 0, outside a compact set.
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infinity such that f = 1 on a bounded neighbourhood of 0.
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Then the function Rf : R
d \ {0} → C given by

Rf(x) :=

∫+∞
0

dμ

μ

[
f(μx) − χ[0,1](μ)

]

is well-defined.
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6 Averaged localization functions

Take a function f ∈ L∞ (Rd) decaying to 0 sufficiently fast at
infinity such that f = 1 on a bounded neighbourhood of 0.

Then the function Rf : R
d \ {0} → C given by

Rf(x) :=

∫+∞
0

dμ

μ

[
f(μx) − χ[0,1](μ)

]

is well-defined.

Example: If f is radial, i.e. f(x) = f0(|x|) for a.e. x ∈ Rd, then

Rf(x) = Rf0
(1) − ln |x|,

and
(∇Rf)(x) = −x−2x.
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Theorem: Suppose that f ∈ S(Rd) is even and satisfies f = 1 on a
bounded neighbourhood of 0. Let h be as above. Then there exists
a dense set of vectors ϕ such that

lim
r→∞

∫∞
0

dt
〈
ϕ,

[
eith(P)f(Q/r)e−ith(P) − e−ith(P)f(Q/r)eith(P)

]
ϕ

〉
= 〈ϕ, Afϕ〉,

where

Af := Q · (∇Rf)[(∇h)(P)] + (∇Rf)[(∇h)(P)] · Q.
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Remark: If f is radial, Af reduces to the operator

A := −
(
Q · (∇h)(P)

(∇h)(P)2 +
(∇h)(P)
(∇h)(P)2 · Q)

.
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Remark: If f is radial, Af reduces to the operator

A := −
(
Q · (∇h)(P)

(∇h)(P)2 +
(∇h)(P)
(∇h)(P)2 · Q)

.

Formally, one has

[A, eith(P)] = 2teith(P) =⇒ A = −2i
d

dh(P)
.
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Remark: If f is radial, Af reduces to the operator

A := −
(
Q · (∇h)(P)

(∇h)(P)2 +
(∇h)(P)
(∇h)(P)2 · Q)

.

Formally, one has

[A, eith(P)] = 2teith(P) =⇒ A = −2i
d

dh(P)
.

Hence, if f is radial and H0 has purely absolutely continuous
spectrum, the theorem gives

lim
r→∞

∫∞
0

dt
〈
ϕ,

[
eith(P)f(Q/r)e−ith(P) − e−ith(P)f(Q/r)eith(P)

]
ϕ

〉

=

∫
σ(H0)

dλ
〈
(Uϕ)(λ), −2i

d(Uϕ)

dλ
(λ)

〉
Hλ

,

where U : H → ∫
σ(H0)

dλHλ is a spectral transformation for
H0 = h(P).
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7 Existence of symmetrised time delay

Let H be any selfadjoint perturbation of H0 = h(P) satisfying the
following condition.

Assumption W±: The wave operators W± exist and are
complete, and any operator T ∈ B(D(〈Q〉−ρ),H)

, with ρ > 1
2 , is

locally H-smooth on R \ {κ(h) ∪ σpp(H)}.



22/29

Theorem: Let f ≥ 0 be an even function in S(Rd) such that f = 1

on a bounded neighbourhood of 0. Let h be as above. Suppose that
Assumption W± holds. Then, if ϕ satisfies some technical
conditions, one has

lim
r→∞ τr(ϕ) = 1

2 〈ϕ, S∗[Af, S]ϕ〉 .
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Theorem: Let f ≥ 0 be an even function in S(Rd) such that f = 1

on a bounded neighbourhood of 0. Let h be as above. Suppose that
Assumption W± holds. Then, if ϕ satisfies some technical
conditions, one has

lim
r→∞ τr(ϕ) = 1

2 〈ϕ, S∗[Af, S]ϕ〉 .

Remark 1: If f is radial and H0 has purely absolutely continuous
spectrum, we get the identity of symmetrised time delay and
Eisenbud-Wigner time delay for dispersive Hamiltonians
H0 = h(P):

lim
r→∞ τr(ϕ) =

∫
σ(H0)

dλ
〈
(Uϕ)(λ), −iS(λ)∗ dS(λ)

dλ (Uϕ)(λ)
〉
Hλ

.
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Remark 2: One can always write the symmetrised time delay as
the sum of the contribution of the radial component of the
localization function f (Eisenbud-Wigner) and the contribution of
the non-radial component of f:

lim
r→∞ τr(ϕ) = 1

2 〈ϕ, S∗[A, S]ϕ〉 + 1
2

〈
ϕ, S∗[Ãf, S]ϕ

〉
,

where Ãf = Af − A.
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Remark 2: One can always write the symmetrised time delay as
the sum of the contribution of the radial component of the
localization function f (Eisenbud-Wigner) and the contribution of
the non-radial component of f:

lim
r→∞ τr(ϕ) = 1

2 〈ϕ, S∗[A, S]ϕ〉 + 1
2

〈
ϕ, S∗[Ãf, S]ϕ

〉
,

where Ãf = Af − A.

Remark 3: Appart technical conditions, we only need to suppose
that the localization function f is even to get the existence of
symetrised time delay.
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8 Equality of symmetrised time delay

and usual time delay

Let Ff : Rd \ {0} → C be defined by

Ff(x) :=

∫
R

dμ f(μx).
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Let Ff : Rd \ {0} → C be defined by

Ff(x) :=

∫
R

dμ f(μx).

If p ∈ R
d and f is real, the number Ff(p) ≡ ∫

R
dt f(tp) can be seen

as the sojourn time in the region defined by the localization
function f of a free classical particle moving along the trajectory
R � t �→ x(t) := tp.
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8 Equality of symmetrised time delay

and usual time delay

Let Ff : Rd \ {0} → C be defined by

Ff(x) :=

∫
R

dμ f(μx).

If p ∈ R
d and f is real, the number Ff(p) ≡ ∫

R
dt f(tp) can be seen

as the sojourn time in the region defined by the localization
function f of a free classical particle moving along the trajectory
R � t �→ x(t) := tp.

Ff[(∇h)(P)] is a “quantum analog” of Ff(p), since (∇h)(P) is the
quantum velocity operator.
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Theorem: Let f ∈ S(Rd) be even. Let h be as above. Suppose
that Assumption W± holds. Assume that

[
Ff[(∇h)(P)], S

]
= 0. (1)

Then, if ϕ satisfies some technical conditions, one has

lim
r→∞

[
T0

r (Sϕ) − T0
r (ϕ)

]
= 0.
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Theorem: Let f ∈ S(Rd) be even. Let h be as above. Suppose
that Assumption W± holds. Assume that

[
Ff[(∇h)(P)], S

]
= 0. (1)

Then, if ϕ satisfies some technical conditions, one has

lim
r→∞

[
T0

r (Sϕ) − T0
r (ϕ)

]
= 0.

In particular, time delay and symmetrized time delay satisfy

lim
r→∞

[
τin

r (ϕ) − τr(ϕ)
]

= 0.
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Sketch of the proof:

Using the change of variables μ := t/r, ν := 1/r, and the parity of
f, one gets

lim
r→∞

[
T0

r (Sϕ) − T0
r (ϕ)

]

= lim
r→∞

∫
R

dt
〈
ϕ, S∗[eith(P)f(Q/r)e−ith(P), S]ϕ

〉
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Sketch of the proof:

Using the change of variables μ := t/r, ν := 1/r, and the parity of
f, one gets

lim
r→∞

[
T0

r (Sϕ) − T0
r (ϕ)

]

= lim
r→∞

∫
R

dt
〈
ϕ, S∗[eith(P)f(Q/r)e−ith(P), S]ϕ

〉

= lim
r→∞

∫
R

dt
〈
ϕ, S∗[eith(P)f(Q/r)e−ith(P), S]ϕ

〉
−

〈
ϕ, S∗[Ff[(∇h)(P)], S

]
ϕ

〉
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Sketch of the proof:

Using the change of variables μ := t/r, ν := 1/r, and the parity of
f, one gets

lim
r→∞

[
T0

r (Sϕ) − T0
r (ϕ)

]

= lim
r→∞

∫
R

dt
〈
ϕ, S∗[eith(P)f(Q/r)e−ith(P), S]ϕ

〉

= lim
r→∞

∫
R

dt
〈
ϕ, S∗[eith(P)f(Q/r)e−ith(P), S]ϕ

〉
−

〈
ϕ, S∗[Ff[(∇h)(P)], S

]
ϕ

〉
= lim

ν↘0

∫
R

dμ
〈
ϕ, S∗[ 1

ν

{
f[νQ + μ(∇h)(P)] − f[μ(∇h)(P)]

}
, S

]
ϕ

〉
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Sketch of the proof:

Using the change of variables μ := t/r, ν := 1/r, and the parity of
f, one gets

lim
r→∞

[
T0

r (Sϕ) − T0
r (ϕ)

]

= lim
r→∞

∫
R

dt
〈
ϕ, S∗[eith(P)f(Q/r)e−ith(P), S]ϕ

〉

= lim
r→∞

∫
R

dt
〈
ϕ, S∗[eith(P)f(Q/r)e−ith(P), S]ϕ

〉
−

〈
ϕ, S∗[Ff[(∇h)(P)], S

]
ϕ

〉
= lim

ν↘0

∫
R

dμ
〈
ϕ, S∗[ 1

ν

{
f[νQ + μ(∇h)(P)] − f[μ(∇h)(P)]

}
, S

]
ϕ

〉

=

∫
R

dμ
〈
ϕ, S∗[Q · (∇f)[μ(∇h)(P)], S]ϕ

〉



26-e/29

Sketch of the proof:

Using the change of variables μ := t/r, ν := 1/r, and the parity of
f, one gets

lim
r→∞

[
T0

r (Sϕ) − T0
r (ϕ)

]

= lim
r→∞

∫
R

dt
〈
ϕ, S∗[eith(P)f(Q/r)e−ith(P), S]ϕ

〉

= lim
r→∞

∫
R

dt
〈
ϕ, S∗[eith(P)f(Q/r)e−ith(P), S]ϕ

〉
−

〈
ϕ, S∗[Ff[(∇h)(P)], S

]
ϕ

〉
= lim

ν↘0

∫
R

dμ
〈
ϕ, S∗[ 1

ν

{
f[νQ + μ(∇h)(P)] − f[μ(∇h)(P)]

}
, S

]
ϕ

〉

=

∫
R

dμ
〈
ϕ, S∗[Q · (∇f)[μ(∇h)(P)], S]ϕ

〉
= 0.
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There are (at least) two situations where condition (1) is satisfied:
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There are (at least) two situations where condition (1) is satisfied:

• Let h be a polynomial of degree 1, i.e. h(x) = v0 + v · x for some
v0 ∈ R, v ∈ Rd \ {0}. Then Ff[(∇h)(P)] reduces to the scalar Ff(v),
and thus it commutes with S.
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There are (at least) two situations where condition (1) is satisfied:

• Let h be a polynomial of degree 1, i.e. h(x) = v0 + v · x for some
v0 ∈ R, v ∈ Rd \ {0}. Then Ff[(∇h)(P)] reduces to the scalar Ff(v),
and thus it commutes with S.

(This covers the case of the Friedrichs Hamiltonian.)
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There are (at least) two situations where condition (1) is satisfied:

• Let h be a polynomial of degree 1, i.e. h(x) = v0 + v · x for some
v0 ∈ R, v ∈ Rd \ {0}. Then Ff[(∇h)(P)] reduces to the scalar Ff(v),
and thus it commutes with S.

(This covers the case of the Friedrichs Hamiltonian.)

• Suppose that f and h are radial, i.e. f(x) = f0(|x|) and
h(x) = h0(|x|) with, say, h ′

0 ≥ 0 on R+. Then
Ff[(∇h)(P)] = Ff

(
h ′

0(|P|)
)

is diagonalizable in the spectral
representation of H0 ≡ h(P). So it commutes with S.
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There are (at least) two situations where condition (1) is satisfied:

• Let h be a polynomial of degree 1, i.e. h(x) = v0 + v · x for some
v0 ∈ R, v ∈ Rd \ {0}. Then Ff[(∇h)(P)] reduces to the scalar Ff(v),
and thus it commutes with S.

(This covers the case of the Friedrichs Hamiltonian.)

• Suppose that f and h are radial, i.e. f(x) = f0(|x|) and
h(x) = h0(|x|) with, say, h ′

0 ≥ 0 on R+. Then
Ff[(∇h)(P)] = Ff

(
h ′

0(|P|)
)

is diagonalizable in the spectral
representation of H0 ≡ h(P). So it commutes with S.

(This covers the Schrödinger case h0(ρ) = ρ2, the square-root
Klein-Gordon case h0(ρ) =

√
1 + ρ2, and many others.)
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9 Existence of usual time delay
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9 Existence of usual time delay

Theorem: Let f ≥ 0 be an even function in S(Rd) such that f = 1

on a bounded neighbourhood of 0. Let h be as above. Suppose that
Assumption W± holds. Assume that

[
Ff[(∇h)(P)], S

]
= 0.

Then, if ϕ satisfies some technical conditions, one has

lim
r→∞ τin

r (ϕ) = lim
r→∞ τr(ϕ) = 1

2 〈ϕ, S∗[Af, S]ϕ〉 .



29/29

10 Some references

• Amrein, W. O. and Jacquet, Ph. Time delay for one-dimensional
quantum systems with steplike potentials. Phys. Rev. A, 2007.

• Amrein, W. O. and Sinha, K. B. Time delay and resonances in
potential scattering. J. Phys. A, 2006.

• Gérard, C. and Tiedra de Aldecoa, R. Generalized definition of
time delay in scattering theory. J. Math. Phys., 2007.

• Tiedra de Aldecoa, R. Time delay for dispersive systems in
quantum scattering theory. I. The Friedrichs model Preprint on
arXiv


