Time delay for dispersive quantum Hamiltonians

Rafael Tiedra de Aldecoa (University of Cergy-Pontoise)

Santiago, September 2008

• Hilbert space $\mathcal{H} := L^2(\mathbb{R}^d)$

- Hilbert space $\mathcal{H} := L^2(\mathbb{R}^d)$
- Free Hamiltonian H_0 with purely absolutely continuous spectrum $\sigma(H_0)$ (for instance $H_0 := -\Delta$)

- Hilbert space $\mathcal{H} := L^2(\mathbb{R}^d)$
- Free Hamiltonian H_0 with purely absolutely continuous spectrum $\sigma(H_0)$ (for instance $H_0 := -\Delta$)
- Full Hamiltonian H (typically $H = H_0 + V$)

- Hilbert space $\mathcal{H} := L^2(\mathbb{R}^d)$
- Free Hamiltonian H_0 with purely absolutely continuous spectrum $\sigma(H_0)$ (for instance $H_0 := -\Delta$)
- ullet Full Hamiltonian H (typically $H=H_0+V$)
- Complete wave operators, *i.e.*

$$W_{\pm} := \operatorname{s-} \lim_{t \to \pm \infty} \operatorname{e}^{\operatorname{itH}} \operatorname{e}^{-\operatorname{itH}_0}$$

with
$$\operatorname{Ran}(W_{-}) = \operatorname{Ran}(W_{+}) = \mathcal{H}_{\operatorname{ac}}(H)$$

- Hilbert space $\mathcal{H} := L^2(\mathbb{R}^d)$
- Free Hamiltonian H_0 with purely absolutely continuous spectrum $\sigma(H_0)$ (for instance $H_0 := -\Delta$)
- Full Hamiltonian H (typically $H = H_0 + V$)
- Complete wave operators, *i.e.*

$$W_{\pm} := \operatorname{s-} \lim_{t \to \pm \infty} \operatorname{e}^{itH} \operatorname{e}^{-itH_0}$$

with
$$\operatorname{Ran}(W_{-}) = \operatorname{Ran}(W_{+}) = \mathcal{H}_{\operatorname{ac}}(H)$$

• Scattering operator

$$S := W_+^* W_-$$

(unitarity)

Figure 1: Wave operators W_{\pm} and scattering operator S

There exist Hilbert spaces $\mathcal{H}_{\lambda}, \ \lambda \in \sigma(H_0),$ and a unitary transformation

$$\mathcal{U}:\mathcal{H}\to\int_{\sigma(\,H_{\,0}\,)}^{\oplus}\mathrm{d}\lambda\,\mathcal{H}_{\lambda}$$

such that

$$\mathcal{U}H_0\mathcal{U}^{-1}=\int_{\sigma(H_0)}^{\oplus}\mathrm{d}\lambda\,\lambda.$$

There exist Hilbert spaces \mathcal{H}_{λ} , $\lambda \in \sigma(H_0)$, and a unitary transformation

$$\mathcal{U}:\mathcal{H}
ightarrow \int_{\sigma(H_0)}^{\oplus} \mathrm{d}\lambda \, \mathcal{H}_{\lambda}$$

such that

$$\mathcal{U}H_0\mathcal{U}^{-1} = \int_{\sigma(H_0)}^{\oplus} \mathrm{d}\lambda \lambda.$$

S is decomposable in the spectral representation of H_0 , *i.e.* there exist unitary operators $S(\lambda)$ in \mathcal{H}_{λ} such that

$$\label{eq:USU-1} \mathcal{U} S \mathcal{U}^{-1} = \int_{\sigma(H_0)}^{\oplus} \mathrm{d}\lambda \, S(\lambda).$$

There exist Hilbert spaces \mathcal{H}_{λ} , $\lambda \in \sigma(H_0)$, and a unitary transformation

$$\mathcal{U}:\mathcal{H} \to \int_{\sigma(\mathcal{H}_0)}^{\oplus} \mathrm{d}\lambda \,\mathcal{H}_{\lambda}$$

such that

$$\mathcal{U}H_0\mathcal{U}^{-1} = \int_{\sigma(H_0)}^{\oplus} \mathrm{d}\lambda \lambda.$$

S is decomposable in the spectral representation of H_0 , *i.e.* there exist unitary operators $S(\lambda)$ in \mathcal{H}_{λ} such that

$$\mathcal{U}S\mathcal{U}^{-1} = \int_{\sigma(H_0)}^{\oplus} \mathrm{d}\lambda \, S(\lambda).$$

The collection $\{S(\lambda)\}$, $\lambda \in \sigma(H_0)$, is the scattering matrix.

• $\{S(\lambda)\}_{\lambda \geq 0}$, scattering matrix for $H_0 = -\Delta$ and $H = H_0 + V$, with V radial

• $\{S(\lambda)\}_{\lambda \geq 0}$, scattering matrix for $H_0 = -\Delta$ and $H = H_0 + V$, with V radial

Heuristically, the time delay of an outcoming radial wave packet with respect to the associated free incoming wave packet (peaked around the kinetic energy λ) is given by derivative of the phase shift:

$$\tau(\lambda) = -iS(\lambda)^* \frac{dS(\lambda)}{d\lambda}$$

• $\{S(\lambda)\}_{\lambda \geq 0}$, scattering matrix for $H_0 = -\Delta$ and $H = H_0 + V$, with V radial

Heuristically, the time delay of an outcoming radial wave packet with respect to the associated free incoming wave packet (peaked around the kinetic energy λ) is given by derivative of the phase shift:

$$\tau(\lambda) = -iS(\lambda)^* \frac{dS(\lambda)}{d\lambda}$$

(Eisenbud-Wigner time delay, 60's)

Take a function $f \in L^{\infty}(\mathbb{R}^d)$ decaying to 0 at infinity such that f=1 on a bounded neighbourhood Σ of 0. Let $Q\equiv (Q_1,\ldots,Q_d)$ be the vector position operator in \mathcal{H} .

Take a function $f \in L^{\infty}(\mathbb{R}^d)$ decaying to 0 at infinity such that f=1 on a bounded neighbourhood Σ of 0. Let $Q\equiv (Q_1,\ldots,Q_d)$ be the vector position operator in \mathcal{H} .

 \Longrightarrow f(Q/r), r > 0, is (approximately) the operator of localization in the dilated region $\Sigma_r := r\Sigma$ of \mathbb{R}^d .

Take a function $f \in L^{\infty}(\mathbb{R}^d)$ decaying to 0 at infinity such that f = 1 on a bounded neighbourhood Σ of 0. Let $Q \equiv (Q_1, \ldots, Q_d)$ be the vector position operator in \mathcal{H} .

 \Longrightarrow f(Q/r), r > 0, is (approximately) the operator of localization in the dilated region $\Sigma_r := r\Sigma$ of \mathbb{R}^d .

Example: f(Q/r) is the (exact) localization operator in $\mathcal{B}_r := \{x \in \mathbb{R}^d \mid |x| < r\}$ if $f = \chi_{\mathcal{B}_1}$.

Let $\varphi \in \mathcal{H}$ be an appropriate normalised scattering state.

• Sojourn time of the freely evolving state $e^{-itH_0}\phi$ in Σ_r :

$$T_r^0(\phi) := \int_{\mathbb{R}} \mathrm{d}t \left\langle \mathrm{e}^{-\mathrm{i}t H_0} \phi, f(Q/r) \mathrm{e}^{-\mathrm{i}t H_0} \phi \right\rangle$$

Let $\varphi \in \mathcal{H}$ be an appropriate normalised scattering state.

• Sojourn time of the freely evolving state $e^{-itH_0}\varphi$ in Σ_r :

$$T_r^0(\phi) := \int_{\mathbb{R}} \mathrm{d}t \left\langle \mathrm{e}^{-\mathrm{i}tH_0} \phi, f(Q/r) \mathrm{e}^{-\mathrm{i}tH_0} \phi \right\rangle$$

• Sojourn time of the associated scattering state $e^{-itH}W_{-}\phi$ in Σ_r :

$$T_r(\phi) := \int_{\mathbb{R}} \mathrm{d}t \left\langle \mathrm{e}^{-\mathrm{i}tH} W_- \phi, f(Q/r) \mathrm{e}^{-\mathrm{i}tH} W_- \phi \right\rangle$$

Time delay for the scattering process with incoming state ϕ in Σ_r :

$$\tau_r^{\mathrm{in}}(\phi) := T_r(\phi) - T_r^0(\phi).$$

Time delay for the scattering process with incoming state ϕ in Σ_r :

$$\tau_{\mathbf{r}}^{\mathrm{in}}(\varphi) := \mathsf{T}_{\mathbf{r}}(\varphi) - \mathsf{T}_{\mathbf{r}}^{\mathsf{0}}(\varphi).$$

(definition introduced by Jauch, Misra, and Sinha in the 70's, when $f = \chi_{\mathcal{B}_1}$ and $H_0 = -\Delta$)

Figure 2: Interpretation of $\tau_r^{\rm in}(\phi)$

If $f = \chi_{\mathcal{B}_1}$, $H_0 = -\Delta$, and H is appropriate, $\tau_r^{\rm in}(\phi)$ exists for each r > 0, and

$$\begin{split} \lim_{r \to \infty} \tau_r^{\mathrm{in}}(\phi) &= \int_0^\infty \mathrm{d}\lambda \, \big\langle (\mathcal{U}\phi)(\lambda), -iS(\lambda)^* \big(\frac{\mathrm{d}S(\lambda)}{\mathrm{d}\lambda} \big) (\mathcal{U}\phi)(\lambda) \big\rangle_{L^2(\mathbb{S}^{d-1})} \\ &\equiv \big\langle \phi, \tau_{\text{E-W}} \phi \big\rangle \,. \end{split}$$

If $f = \chi_{\mathcal{B}_1}$, $H_0 = -\Delta$, and H is appropriate, $\tau_r^{\rm in}(\phi)$ exists for each r > 0, and

$$\begin{split} \lim_{r \to \infty} \tau_r^{\mathrm{in}}(\phi) &= \int_0^\infty \mathrm{d}\lambda \, \big\langle (\mathcal{U}\phi)(\lambda), -iS(\lambda)^* \big(\frac{\mathrm{d}S(\lambda)}{\mathrm{d}\lambda} \big) (\mathcal{U}\phi)(\lambda) \big\rangle_{L^2(\mathbb{S}^{d-1})} \\ &\equiv \big\langle \phi, \tau_{\text{E-W}} \phi \big\rangle \,. \end{split}$$

This formula expresses the identity of time delay (defined in terms of sojourn times) and Eisenbud-Wigner time delay.

If $f = \chi_{\mathcal{B}_1}$, $H_0 = -\Delta$, and H is appropriate, $\tau_r^{\rm in}(\phi)$ exists for each r > 0, and

$$\begin{split} \lim_{r \to \infty} \tau_r^{\mathrm{in}}(\phi) &= \int_0^\infty \mathrm{d}\lambda \, \big\langle (\mathcal{U}\phi)(\lambda), -iS(\lambda)^* \big(\frac{\mathrm{d}S(\lambda)}{\mathrm{d}\lambda} \big) (\mathcal{U}\phi)(\lambda) \big\rangle_{L^2(\mathbb{S}^{d-1})} \\ &\equiv \big\langle \phi, \tau_{\text{E-W}} \phi \big\rangle \,. \end{split}$$

This formula expresses the identity of time delay (defined in terms of sojourn times) and Eisenbud-Wigner time delay.

(Amrein, Cibils, Jensen, Martin, 80's and 90's)

4 Symmetrised time delay

4 Symmetrised time delay

Alternate (symmetrised) definition:

$$\tau_r(\phi) := T_r(\phi) - \frac{1}{2} \left[T_r^0(\phi) + T_r^0(S\phi) \right]$$

4 Symmetrised time delay

Alternate (symmetrised) definition:

$$\tau_r(\phi) := T_r(\phi) - \frac{1}{2} \left[T_r^0(\phi) + T_r^0(S\phi) \right]$$

Figure 3: Interpretation of $\tau_r(\phi)$

Some examples where the existence of symmetrised time delay has been established (for $f = \chi_{\mathcal{B}_1}$):

• scattering for dissipative interactions (Martin 75),

- scattering for dissipative interactions (Martin 75),
- "N-body scattering" (Bollé-Osborn 79),

- scattering for dissipative interactions (Martin 75),
- "N-body scattering" (Bollé-Osborn 79),
- scattering in quantum waveguides (TdA 06),

- scattering for dissipative interactions (Martin 75),
- "N-body scattering" (Bollé-Osborn 79),
- scattering in quantum waveguides (TdA 06),
- scattering for one-dimensionnal anisotropic potentials (Amrein-Jacquet 07).

Gérard-TdA 06: If $f = \chi_{\Sigma}$ with $\Sigma = -\Sigma$, $H_0 = -\Delta$, and H is appropriate, then $\tau_r(\phi)$ exists for each r > 0, and

 $\lim_{r\to\infty}\tau_r(\phi)=\langle\phi,\tau_{\text{\tiny E-W}}\phi\rangle+(\text{contribution depending on }\partial\Sigma).$

Gérard-TdA 06: If $f = \chi_{\Sigma}$ with $\Sigma = -\Sigma$, $H_0 = -\Delta$, and H is appropriate, then $\tau_r(\phi)$ exists for each r > 0, and

$$\lim_{r\to\infty}\tau_r(\phi)=\langle\phi,\tau_{\text{\tiny E-W}}\phi\rangle+(\text{contribution depending on }\partial\Sigma).$$

If $f = \chi_{\mathcal{B}_1}$, the second contribution vanishes, and all the time delays coincide:

$$\lim_{r\to\infty}\tau_r(\phi)=\lim_{r\to\infty}\tau_r^{\rm in}(\phi)=\left\langle\phi,\tau_{\text{E-W}}\phi\right\rangle.$$

TdA 08 (Friedrichs model): Take $H_0 = Q$ in one dimension, and let H be some appropriate perturbation of H_0 .

TdA 08 (Friedrichs model): Take $H_0 = Q$ in one dimension, and let H be some appropriate perturbation of H_0 .

Let $f \geq 0$ satisfy the following conditions:

- (i) f is even.
- (ii) f decays to 0 sufficiently fast at infinity.
- (iii) f = 1 on a bounded neighbourhood of 0.

TdA 08 (Friedrichs model): Take $H_0 = Q$ in one dimension, and let H be some appropriate perturbation of H_0 .

Let $f \geq 0$ satisfy the following conditions:

- (i) f is even.
- (ii) f decays to 0 sufficiently fast at infinity.
- (iii) f = 1 on a bounded neighbourhood of 0.

Then all the time delays exist and coincide:

$$\lim_{r\to\infty}\tau_r(\phi)=\lim_{r\to\infty}\tau_r^{\rm in}(\phi)=\left\langle\phi,\tau_{\text{\tiny E-W}}\phi\right\rangle.$$

Could we extend the theory in order to get a unified picture of the problem?

Notation: Given a function $h \in C^1(\mathbb{R}^d; \mathbb{R})$, we denote by $\kappa(h)$ the set of critical values of h, *i.e.*

 $\kappa(h) := \{\lambda \in \mathbb{R} \mid \exists x \in \mathbb{R}^d \text{ such that } h(x) = \lambda \text{ and } (\nabla h)(x) = 0\}.$

Notation: Given a function $h \in C^1(\mathbb{R}^d; \mathbb{R})$, we denote by $\kappa(h)$ the set of critical values of h, *i.e.*

$$\kappa(h) := \{\lambda \in \mathbb{R} \mid \exists x \in \mathbb{R}^d \text{ such that } h(x) = \lambda \text{ and } (\nabla h)(x) = 0\}.$$

- $\kappa(h)$ has measure zero if $h \in C^d(\mathbb{R}^d; \mathbb{R})$.

Notation: Given a function $h \in C^1(\mathbb{R}^d; \mathbb{R})$, we denote by $\kappa(h)$ the set of critical values of h, *i.e.*

$$\kappa(h) := \{\lambda \in \mathbb{R} \mid \exists x \in \mathbb{R}^d \text{ such that } h(x) = \lambda \text{ and } (\nabla h)(x) = 0\}.$$

- $\kappa(h)$ has measure zero if $h \in C^d(\mathbb{R}^d; \mathbb{R})$.
- $\kappa(h)$ is finite if h is a polynomial.

Notation: Given a function $h \in C^1(\mathbb{R}^d; \mathbb{R})$, we denote by $\kappa(h)$ the set of critical values of h, *i.e.*

$$\kappa(h) := \{\lambda \in \mathbb{R} \mid \exists x \in \mathbb{R}^d \text{ such that } h(x) = \lambda \text{ and } (\nabla h)(x) = 0\}.$$

- $\kappa(h)$ has measure zero if $h \in C^d(\mathbb{R}^d; \mathbb{R})$.
- $\kappa(h)$ is finite if h is a polynomial.
- $\kappa(h)$ is closed if $|h(x)| \to \infty$ as $|x| \to \infty$.

We set $H_0:=h(P),$ with $P\equiv (-i\partial_1,\ldots,-i\partial_d)$ the momentum operator in $\mathcal{H}.$

We set $H_0 := h(P)$, with $P \equiv (-i\partial_1, \dots, -i\partial_d)$ the momentum operator in \mathcal{H} .

Assumption (hypoelliptic-type): The function $h : \mathbb{R}^d \to \mathbb{R}$ is of class C^m for some $m \geq 3$, and satisfies the following conditions:

- (i) $|h(x)| \to \infty$ as $|x| \to \infty$.
- (ii) $\sum_{|\alpha| < m} |(\partial^{\alpha} h)(x)| \le \text{Const.}(1 + |h(x)|).$
- (iii) $\sum_{|\alpha|=m} |(\partial^{\alpha} h)(x)| \leq \text{Const.}$

We set $H_0 := h(P)$, with $P \equiv (-i\partial_1, \dots, -i\partial_d)$ the momentum operator in \mathcal{H} .

Assumption (hypoelliptic-type): The function $h : \mathbb{R}^d \to \mathbb{R}$ is of class C^m for some $m \geq 3$, and satisfies the following conditions:

- (i) $|h(x)| \to \infty$ as $|x| \to \infty$.
- (ii) $\sum_{|\alpha| \le m} |(\vartheta^{\alpha} h)(x)| \le \text{Const.}(1 + |h(x)|).$
- (iii) $\sum_{|\alpha|=m} |(\partial^{\alpha}h)(x)| \leq \text{Const.}$

 H_0 has purely absolutely continuous spectrum in $\mathbb{R} \setminus \kappa(h)$.

We set $H_0 := h(P)$, with $P \equiv (-i\partial_1, \dots, -i\partial_d)$ the momentum operator in \mathcal{H} .

Assumption (hypoelliptic-type): The function $h : \mathbb{R}^d \to \mathbb{R}$ is of class C^m for some $m \geq 3$, and satisfies the following conditions:

- (i) $|h(x)| \to \infty$ as $|x| \to \infty$.
- (ii) $\sum_{|\alpha| \le m} |(\partial^{\alpha} h)(x)| \le \text{Const.}(1 + |h(x)|).$
- (iii) $\sum_{|\alpha|=m} |(\partial^{\alpha} h)(x)| \leq \text{Const.}$

 H_0 has purely absolutely continuous spectrum in $\mathbb{R} \setminus \kappa(h)$.

Example: h can be an elliptic symbol of degree s > 0, i.e. $h \in C^{\infty}(\mathbb{R}^d; \mathbb{R})$, $|(\partial^{\alpha}h)(x)| \leq C_{\alpha}\langle x \rangle^{s-|\alpha|}$ for each multi-index α , and $|h(x)| \geq C|x|^s$, for some C > 0, outside a compact set.

Take a function $f \in L^{\infty}(\mathbb{R}^d)$ decaying to 0 sufficiently fast at infinity such that f = 1 on a bounded neighbourhood of 0.

Take a function $f \in L^{\infty}(\mathbb{R}^d)$ decaying to 0 sufficiently fast at infinity such that f = 1 on a bounded neighbourhood of 0.

Then the function $R_f: \mathbb{R}^d \setminus \{0\} \to \mathbb{C}$ given by

$$R_f(x) := \int_0^{+\infty} \frac{\mathrm{d}\mu}{\mu} \left[f(\mu x) - \chi_{[0,1]}(\mu) \right]$$

is well-defined.

Take a function $f \in L^{\infty}(\mathbb{R}^d)$ decaying to 0 sufficiently fast at infinity such that f = 1 on a bounded neighbourhood of 0.

Then the function $R_f: \mathbb{R}^d \setminus \{0\} \to \mathbb{C}$ given by

$$R_f(x) := \int_0^{+\infty} \frac{\mathrm{d}\mu}{\mu} \left[f(\mu x) - \chi_{[0,1]}(\mu) \right]$$

is well-defined.

Example: If f is radial, *i.e.* $f(x) = f_0(|x|)$ for a.e. $x \in \mathbb{R}^d$, then

$$R_f(x) = R_{f_0}(1) - \ln|x|,$$

and

$$(\nabla R_f)(x) = -x^{-2}x.$$

Theorem: Suppose that $f \in S(\mathbb{R}^d)$ is even and satisfies f = 1 on a bounded neighbourhood of 0. Let h be as above. Then there exists a dense set of vectors φ such that

$$\begin{split} &\lim_{r\to\infty}\int_0^\infty \mathrm{d}t \, \big\langle \phi, \big[\mathrm{e}^{\mathrm{i}th(P)} f(Q/r) \mathrm{e}^{-\mathrm{i}th(P)} - \mathrm{e}^{-\mathrm{i}th(P)} f(Q/r) \mathrm{e}^{\mathrm{i}th(P)} \big] \phi \big\rangle \\ &= \langle \phi, A_f \phi \rangle, \end{split}$$

where

$$A_f := Q \cdot (\nabla R_f)[(\nabla h)(P)] + (\nabla R_f)[(\nabla h)(P)] \cdot Q.$$

Remark: If f is radial, A_f reduces to the operator

$$A := -\left(Q \cdot \frac{(\nabla h)(P)}{(\nabla h)(P)^2} + \frac{(\nabla h)(P)}{(\nabla h)(P)^2} \cdot Q\right).$$

Remark: If f is radial, A_f reduces to the operator

$$A := -\left(Q \cdot \frac{(\nabla h)(P)}{(\nabla h)(P)^2} + \frac{(\nabla h)(P)}{(\nabla h)(P)^2} \cdot Q\right).$$

Formally, one has

$$[A, e^{ith(P)}] = 2te^{ith(P)} \implies A = -2i\frac{d}{dh(P)}.$$

Remark: If f is radial, A_f reduces to the operator

$$A := -\left(Q \cdot \frac{(\nabla h)(P)}{(\nabla h)(P)^2} + \frac{(\nabla h)(P)}{(\nabla h)(P)^2} \cdot Q\right).$$

Formally, one has

$$[A, e^{ith(P)}] = 2te^{ith(P)} \implies A = -2i\frac{d}{dh(P)}.$$

Hence, if f is radial and H_0 has purely absolutely continuous spectrum, the theorem gives

$$\begin{split} &\lim_{r\to\infty}\int_0^\infty \mathrm{d}t \left\langle \phi, \left[\mathrm{e}^{\mathrm{i}th(P)}f(Q/r)\mathrm{e}^{-\mathrm{i}th(P)} - \mathrm{e}^{-\mathrm{i}th(P)}f(Q/r)\mathrm{e}^{\mathrm{i}th(P)}\right]\phi \right\rangle \\ &= \int_{\sigma(H_0)} \mathrm{d}\lambda \left\langle (\mathcal{U}\phi)(\lambda), -2\mathrm{i}\,\frac{\mathrm{d}(\mathcal{U}\phi)}{\mathrm{d}\lambda}(\lambda) \right\rangle_{\mathcal{H}_\lambda}, \end{split}$$

where $\mathcal{U}: \mathcal{H} \to \int_{\sigma(H_0)} \mathrm{d}\lambda \, \mathcal{H}_{\lambda}$ is a spectral transformation for $H_0 = h(P)$.

7 Existence of symmetrised time delay

7 Existence of symmetrised time delay

Let H be any selfadjoint perturbation of $H_0 = h(P)$ satisfying the following condition.

Assumption W_±: The wave operators W_{\pm} exist and are complete, and any operator $T \in \mathcal{B}(\mathcal{D}(\langle Q \rangle^{-\rho}), \mathcal{H})$, with $\rho > \frac{1}{2}$, is locally H-smooth on $\mathbb{R} \setminus {\kappa(h) \cup \sigma_{pp}(H)}$.

Theorem: Let $f \ge 0$ be an even function in $S(\mathbb{R}^d)$ such that f = 1 on a bounded neighbourhood of 0. Let h be as above. Suppose that Assumption W_{\pm} holds. Then, if ϕ satisfies some technical conditions, one has

$$\lim_{r\to\infty}\tau_r(\phi)=\tfrac{1}{2}\left\langle\phi,S^*[A_f,S]\phi\right\rangle.$$

Theorem: Let $f \ge 0$ be an even function in $S(\mathbb{R}^d)$ such that f = 1 on a bounded neighbourhood of 0. Let h be as above. Suppose that Assumption W_{\pm} holds. Then, if ϕ satisfies some technical conditions, one has

$$\lim_{r\to\infty} \tau_r(\phi) = \frac{1}{2} \left\langle \phi, S^*[A_f, S] \phi \right\rangle.$$

Remark 1: If f is radial and H_0 has purely absolutely continuous spectrum, we get the identity of symmetrised time delay and Eisenbud-Wigner time delay for dispersive Hamiltonians $H_0 = h(P)$:

$$\lim_{r\to\infty}\tau_r(\phi)=\int_{\sigma(H_0)}\mathrm{d}\lambda\left\langle(\mathcal{U}\phi)(\lambda),-iS(\lambda)^*\tfrac{\mathrm{d}S(\lambda)}{\mathrm{d}\lambda}\left(\mathcal{U}\phi)(\lambda)\right\rangle_{\mathcal{H}_\lambda}.$$

Remark 2: One can always write the symmetrised time delay as the sum of the contribution of the radial component of the localization function f (Eisenbud-Wigner) and the contribution of the non-radial component of f:

$$\lim_{r\to\infty}\tau_r(\phi)=\tfrac{1}{2}\left\langle\phi,S^*[A,S]\phi\right\rangle+\tfrac{1}{2}\big\langle\phi,S^*[\widetilde{A_f},S]\phi\big\rangle,$$

where $\widetilde{A_f} = A_f - A$.

Remark 2: One can always write the symmetrised time delay as the sum of the contribution of the radial component of the localization function f (Eisenbud-Wigner) and the contribution of the non-radial component of f:

$$\lim_{r\to\infty}\tau_r(\phi)=\tfrac{1}{2}\left\langle\phi,S^*[A,S]\phi\right\rangle+\tfrac{1}{2}\left\langle\phi,S^*[\widetilde{A_f},S]\phi\right\rangle,$$

where $\widetilde{A_f} = A_f - A$.

Remark 3: Appart technical conditions, we only need to suppose that the localization function f is even to get the existence of symetrised time delay.

Let $F_f : \mathbb{R}^d \setminus \{0\} \to \mathbb{C}$ be defined by

$$F_f(x) := \int_{\mathbb{R}} d\mu f(\mu x).$$

Let $F_f : \mathbb{R}^d \setminus \{0\} \to \mathbb{C}$ be defined by

$$F_f(x) := \int_{\mathbb{R}} d\mu f(\mu x).$$

If $p \in \mathbb{R}^d$ and f is real, the number $F_f(p) \equiv \int_{\mathbb{R}} dt \, f(tp)$ can be seen as the sojourn time in the region defined by the localization function f of a free classical particle moving along the trajectory $\mathbb{R} \ni t \mapsto x(t) := tp$.

Let $F_f : \mathbb{R}^d \setminus \{0\} \to \mathbb{C}$ be defined by

$$F_f(x) := \int_{\mathbb{R}} d\mu f(\mu x).$$

If $p \in \mathbb{R}^d$ and f is real, the number $F_f(p) \equiv \int_{\mathbb{R}} dt \, f(tp)$ can be seen as the sojourn time in the region defined by the localization function f of a free classical particle moving along the trajectory $\mathbb{R} \ni t \mapsto x(t) := tp$.

 $F_f[(\nabla h)(P)]$ is a "quantum analog" of $F_f(p)$, since $(\nabla h)(P)$ is the quantum velocity operator.

Theorem: Let $f \in S(\mathbb{R}^d)$ be even. Let h be as above. Suppose that Assumption W_{\pm} holds. Assume that

$$\left[\mathsf{F}_{\mathsf{f}}[(\nabla \mathsf{h})(\mathsf{P})],\mathsf{S}\right] = \mathsf{0}.\tag{1}$$

Then, if φ satisfies some technical conditions, one has

$$\lim_{r\to\infty}\left[T_r^0(S\phi)-T_r^0(\phi)\right]=0.$$

Theorem: Let $f \in S(\mathbb{R}^d)$ be even. Let h be as above. Suppose that Assumption W_{\pm} holds. Assume that

$$\left[\mathsf{F}_{\mathsf{f}}[(\nabla \mathsf{h})(\mathsf{P})],\mathsf{S}\right] = \mathsf{0}.\tag{1}$$

Then, if φ satisfies some technical conditions, one has

$$\lim_{r\to\infty}\left[T_r^0(S\phi)-T_r^0(\phi)\right]=0.$$

In particular, time delay and symmetrized time delay satisfy

$$\lim_{r\to\infty} \left[\tau_r^{\rm in}(\varphi) - \tau_r(\varphi) \right] = 0.$$

Sketch of the proof:

Using the change of variables $\mu := t/r, \, \nu := 1/r,$ and the parity of f, one gets

$$\begin{split} &\lim_{r\to\infty} \left[T^0_r(S\phi) - T^0_r(\phi) \right] \\ &= \lim_{r\to\infty} \int_{\mathbb{R}} \mathrm{d}t \left\langle \phi, S^*[\mathrm{e}^{\mathrm{i}th(P)}f(Q/r)\mathrm{e}^{-\mathrm{i}th(P)}, S]\phi \right\rangle \end{split}$$

Using the change of variables $\mu := t/r$, $\nu := 1/r$, and the parity of f, one gets

$$\begin{split} &\lim_{r \to \infty} \left[T_r^0(S\phi) - T_r^0(\phi) \right] \\ &= \lim_{r \to \infty} \int_{\mathbb{R}} \mathrm{d}t \left\langle \phi, S^*[\mathrm{e}^{\mathrm{i}th(P)}f(Q/r)\mathrm{e}^{-\mathrm{i}th(P)}, S]\phi \right\rangle \\ &= \lim_{r \to \infty} \int_{\mathbb{R}} \mathrm{d}t \left\langle \phi, S^*[\mathrm{e}^{\mathrm{i}th(P)}f(Q/r)\mathrm{e}^{-\mathrm{i}th(P)}, S]\phi \right\rangle \\ &- \left\langle \phi, S^*[F_f[(\nabla h)(P)], S\right]\phi \right\rangle \end{split}$$

Using the change of variables $\mu := t/r, \, \nu := 1/r,$ and the parity of f, one gets

$$\begin{split} &\lim_{r\to\infty} \left[T_r^0(S\phi) - T_r^0(\phi) \right] \\ &= \lim_{r\to\infty} \int_{\mathbb{R}} \mathrm{d}t \left\langle \phi, S^*[\mathrm{e}^{\mathrm{i}th(P)}f(Q/r)\mathrm{e}^{-\mathrm{i}th(P)}, S]\phi \right\rangle \\ &= \lim_{r\to\infty} \int_{\mathbb{R}} \mathrm{d}t \left\langle \phi, S^*[\mathrm{e}^{\mathrm{i}th(P)}f(Q/r)\mathrm{e}^{-\mathrm{i}th(P)}, S]\phi \right\rangle \\ &- \left\langle \phi, S^*[F_f[(\nabla h)(P)], S]\phi \right\rangle \\ &= \lim_{v\searrow 0} \int_{\mathbb{R}} \mathrm{d}\mu \left\langle \phi, S^*[\frac{1}{v}\{f[vQ + \mu(\nabla h)(P)] - f[\mu(\nabla h)(P)]\}, S]\phi \right\rangle \end{split}$$

Using the change of variables $\mu := t/r$, $\nu := 1/r$, and the parity of f, one gets

$$\begin{split} &\lim_{r\to\infty} \left[T^0_r(S\phi) - T^0_r(\phi) \right] \\ &= \lim_{r\to\infty} \int_{\mathbb{R}} \mathrm{d}t \left\langle \phi, S^*[\mathrm{e}^{\mathrm{i}th(P)}f(Q/r)\mathrm{e}^{-\mathrm{i}th(P)}, S]\phi \right\rangle \\ &= \lim_{r\to\infty} \int_{\mathbb{R}} \mathrm{d}t \left\langle \phi, S^*[\mathrm{e}^{\mathrm{i}th(P)}f(Q/r)\mathrm{e}^{-\mathrm{i}th(P)}, S]\phi \right\rangle \\ &- \left\langle \phi, S^*[F_f[(\nabla h)(P)], S]\phi \right\rangle \\ &= \lim_{v\searrow 0} \int_{\mathbb{R}} \mathrm{d}\mu \left\langle \phi, S^*[\frac{1}{v}\big\{f[vQ + \mu(\nabla h)(P)] - f[\mu(\nabla h)(P)]\big\}, S\big]\phi \right\rangle \\ &= \int_{\mathbb{R}} \mathrm{d}\mu \left\langle \phi, S^*[Q \cdot (\nabla f)[\mu(\nabla h)(P)], S]\phi \right\rangle \end{split}$$

Using the change of variables $\mu := t/r$, $\nu := 1/r$, and the parity of f, one gets

$$\begin{split} &\lim_{r\to\infty} \left[T_r^0(S\phi) - T_r^0(\phi) \right] \\ &= \lim_{r\to\infty} \int_{\mathbb{R}} \mathrm{d}t \left\langle \phi, S^*[\mathrm{e}^{\mathrm{i}th(P)}f(Q/r)\mathrm{e}^{-\mathrm{i}th(P)}, S]\phi \right\rangle \\ &= \lim_{r\to\infty} \int_{\mathbb{R}} \mathrm{d}t \left\langle \phi, S^*[\mathrm{e}^{\mathrm{i}th(P)}f(Q/r)\mathrm{e}^{-\mathrm{i}th(P)}, S]\phi \right\rangle \\ &- \left\langle \phi, S^*[F_f[(\nabla h)(P)], S]\phi \right\rangle \\ &= \lim_{v\searrow 0} \int_{\mathbb{R}} \mathrm{d}\mu \left\langle \phi, S^*[\frac{1}{v}\big\{f[vQ + \mu(\nabla h)(P)] - f[\mu(\nabla h)(P)]\big\}, S\big]\phi \right\rangle \\ &= \int_{\mathbb{R}} \mathrm{d}\mu \left\langle \phi, S^*[Q \cdot (\nabla f)[\mu(\nabla h)(P)], S]\phi \right\rangle \\ &= 0. \end{split}$$

• Let h be a polynomial of degree 1, i.e. $h(x) = v_0 + v \cdot x$ for some $v_0 \in \mathbb{R}$, $v \in \mathbb{R}^d \setminus \{0\}$. Then $F_f[(\nabla h)(P)]$ reduces to the scalar $F_f(v)$, and thus it commutes with S.

• Let h be a polynomial of degree 1, i.e. $h(x) = v_0 + v \cdot x$ for some $v_0 \in \mathbb{R}$, $v \in \mathbb{R}^d \setminus \{0\}$. Then $F_f[(\nabla h)(P)]$ reduces to the scalar $F_f(v)$, and thus it commutes with S.

(This covers the case of the Friedrichs Hamiltonian.)

• Let h be a polynomial of degree 1, i.e. $h(x) = v_0 + v \cdot x$ for some $v_0 \in \mathbb{R}$, $v \in \mathbb{R}^d \setminus \{0\}$. Then $F_f[(\nabla h)(P)]$ reduces to the scalar $F_f(v)$, and thus it commutes with S.

(This covers the case of the Friedrichs Hamiltonian.)

• Suppose that f and h are radial, i.e. $f(x) = f_0(|x|)$ and $h(x) = h_0(|x|)$ with, say, $h'_0 \ge 0$ on \mathbb{R}_+ . Then $F_f[(\nabla h)(P)] = F_f(h'_0(|P|))$ is diagonalizable in the spectral representation of $H_0 \equiv h(P)$. So it commutes with S.

• Let h be a polynomial of degree 1, i.e. $h(x) = v_0 + v \cdot x$ for some $v_0 \in \mathbb{R}$, $v \in \mathbb{R}^d \setminus \{0\}$. Then $F_f[(\nabla h)(P)]$ reduces to the scalar $F_f(v)$, and thus it commutes with S.

(This covers the case of the Friedrichs Hamiltonian.)

• Suppose that f and h are radial, i.e. $f(x) = f_0(|x|)$ and $h(x) = h_0(|x|)$ with, say, $h'_0 \ge 0$ on \mathbb{R}_+ . Then $F_f[(\nabla h)(P)] = F_f(h'_0(|P|))$ is diagonalizable in the spectral representation of $H_0 \equiv h(P)$. So it commutes with S.

(This covers the Schrödinger case $h_0(\rho) = \rho^2$, the square-root Klein-Gordon case $h_0(\rho) = \sqrt{1 + \rho^2}$, and many others.)

9 Existence of usual time delay

9 Existence of usual time delay

Theorem: Let $f \ge 0$ be an even function in $S(\mathbb{R}^d)$ such that f = 1 on a bounded neighbourhood of 0. Let h be as above. Suppose that Assumption W_{\pm} holds. Assume that

$$[F_f[(\nabla h)(P)], S] = 0.$$

Then, if φ satisfies some technical conditions, one has

$$\lim_{r\to\infty}\tau_r^{\rm in}(\phi)=\lim_{r\to\infty}\tau_r(\phi)=\tfrac{1}{2}\left\langle\phi,S^*[A_f,S]\phi\right\rangle.$$

10 Some references

- Amrein, W. O. and Jacquet, Ph. Time delay for one-dimensional quantum systems with steplike potentials. *Phys. Rev. A*, 2007.
- Amrein, W. O. and Sinha, K. B. Time delay and resonances in potential scattering. *J. Phys. A*, 2006.
- Gérard, C. and Tiedra de Aldecoa, R. Generalized definition of time delay in scattering theory. J. Math. Phys., 2007.
- ullet Tiedra de Aldecoa, R. Time delay for dispersive systems in quantum scattering theory. I. The Friedrichs model *Preprint on arXiv*