The absolute continuous spectrum of skew products of compact Lie groups

Rafael Tiedra
(Catholic University of Chile)

Torún, May 2014

Contents

1 Unitary operators 3
2 Commutator methods 7
3 Skew products of compact Lie groups 13
4 The conjugate operator 17
5 The case $\mathbb{T} \times \operatorname{SU}(2)$ 24
6 References 27

1 Unitary operators

A unitary operator U in a Hilbert space \mathcal{H} is a surjective isometry:

$$
U^{*} U=U U^{*}=1
$$

It admits exactly one complex spectral family

$$
E^{U}: \mathbb{C} \rightarrow\{\text { orthogonal projections on } \mathcal{H}\}
$$

with support

$$
\sigma(U) \subset \mathbb{S}^{1} \equiv\{z \in \mathbb{C}| | z \mid=1\}
$$

such that

$$
U=\int_{\mathbb{C}} z \mathrm{~d} E^{U}(z)
$$

The spectrum $\sigma(U)$ of U decomposes as

$$
\sigma(U)=\sigma_{\mathrm{p}}(U) \cup \sigma_{\mathrm{sc}}(U) \cup \sigma_{\mathrm{ac}}(U)
$$

with

$$
\begin{aligned}
\sigma_{\mathrm{p}}(U) & :=\text { pure point spectrum of } U \\
\sigma_{\mathrm{sc}}(U) & :=\text { singular continuous spectrum of } U \\
\sigma_{\mathrm{ac}}(U) & :=\text { absolutely continuous spectrum of } U .
\end{aligned}
$$

The sets $\sigma_{\mathrm{p}}(U), \sigma_{\mathrm{sc}}(U), \sigma_{\mathrm{ac}}(U)$ are closed and (in general) not mutually disjoint.

Example (1-parameter groups of unitary operators). If H is a self-adjoint operator in a Hilbert space \mathcal{H}, then

$$
U_{t}:=\mathrm{e}^{-i t H}, \quad t \in \mathbb{R}
$$

defines a strongly continuous 1-parameter group of unitary operators.

Example (Koopman operator). If $T: X \rightarrow X$ is an
automorphism of a probability space (X, μ), then the Koopman operator

$$
U_{T}: \mathrm{L}^{2}(X, \mu) \rightarrow \mathrm{L}^{2}(X, \mu), \quad \varphi \mapsto \varphi \circ T
$$

is a unitary operator.

Ergodicity, weak mixing and strong mixing of an automorphism $T: X \rightarrow X$ are expressible in terms of spectral properties of the Koopman operator U_{T} :

- T is ergodic if and only if 1 is a simple eigenvalue of U_{T}.
- T is weakly mixing if and only if U_{T} has purely continuous spectrum in $\{\mathbb{C} \cdot 1\}^{\perp}$.
- T is strongly mixing if and only if

$$
\lim _{n \rightarrow \infty}\left\langle\varphi, U_{T}^{n} \varphi\right\rangle=0 \quad \text { for all } \varphi \in\{\mathbb{C} \cdot 1\}^{\perp}
$$

a.c. spectrum in $\{\mathbb{C} \cdot 1\}^{\perp} \Rightarrow$ strong mixing \Rightarrow weak mixing \Rightarrow ergodicity

2 Commutator methods

- \mathcal{H}, Hilbert space with norm $\|\cdot\|$ and scalar product $\langle\cdot, \cdot\rangle$
- $\mathscr{B}(\mathcal{H})$, bounded linear operators on \mathcal{H}
- $\mathscr{K}(\mathcal{H})$, compact operators on \mathcal{H}
- U, unitary operator in \mathcal{H}
- A, self-adjoint operator in \mathcal{H} with domain $\mathcal{D}(A) \subset \mathcal{H}$

Definition. $S \in \mathscr{B}(\mathcal{H})$ satisfies $S \in C^{k}(A)$ if

$$
\mathbb{R} \ni t \mapsto \mathrm{e}^{-i t A} S \mathrm{e}^{i t A} \in \mathscr{B}(\mathcal{H})
$$

is strongly of class C^{k}.
$S \in C^{1}(A)$ if and only if

$$
|\langle\varphi, S A \varphi\rangle-\langle A \varphi, S \varphi\rangle| \leq \text { Const. }\|\varphi\|^{2} \quad \text { for all } \varphi \in \mathcal{D}(A)
$$

The operator corresponding to the continuous extension of the quadratic form is denoted by $[S, A]$, and one has

$$
[i S, A]=\mathrm{s}-\left.\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{e}^{-i t A} S \mathrm{e}^{i t A}\right|_{t=0} \in \mathscr{B}(\mathcal{H})
$$

Example. Let P be the generator of translations in $\mathcal{H}:=L^{2}(\mathbb{R})$, let $f \in \mathrm{~L}^{\infty}(\mathbb{R})$ be an a.c. function with $f^{\prime} \in \mathrm{L}^{\infty}(\mathbb{R})$, and let

$$
M_{f} \varphi:=f \varphi, \quad \varphi \in \mathcal{H},
$$

the corresponding bounded multiplication operator.
One has for each $\varphi \in \mathcal{H}$

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \mathrm{e}^{-i t P} M_{f} \mathrm{e}^{i t P} \varphi=\frac{\mathrm{d}}{\mathrm{~d} t} M_{f(-t)} \varphi=-M_{f^{\prime}(-t)} \varphi
$$

and thus $M_{f} \in C^{1}(P)$ with $\left[i M_{f}, P\right]=-M_{f^{\prime}}$.

Definition. $S \in C^{1+0}(A)$ if $S \in C^{1}(A)$ and

$$
\int_{0}^{1} \frac{\mathrm{~d} t}{t}\left\|\mathrm{e}^{-i t A}[A, S] \mathrm{e}^{i t A}-[A, S]\right\|_{\mathscr{B}(\mathcal{H})}<\infty .
$$

We have the inclusions

$$
C^{2}(A) \subset C^{1+0}(A) \subset C^{1}(A) \subset C^{0}(\mathcal{H}) \equiv \mathscr{B}(\mathcal{H}) .
$$

Example (Continued). Let $f \in \mathrm{~L}^{\infty}(\mathbb{R})$ be an a.c. function with $f^{\prime} \in L^{\infty}(\mathbb{R})$ Dini-continuous.

We know that $M_{f} \in C^{1}(P)$ with $\left[i M_{f}, P\right]=-M_{f^{\prime}}$. So,

$$
\begin{aligned}
\int_{0}^{1} \frac{\mathrm{~d} t}{t}\left\|\mathrm{e}^{-i t P}\left[M_{f}, P\right] \mathrm{e}^{i t P}-\left[M_{f}, P\right]\right\|_{\mathscr{B}(\mathcal{H})} & =\int_{0}^{1} \frac{\mathrm{~d} t}{t}\left\|M_{f^{\prime}(\cdot-t)-f^{\prime}}\right\|_{\mathscr{B}(\mathcal{H})} \\
& =\int_{0}^{1} \frac{\mathrm{~d} t}{t}\left\|f^{\prime}(\cdot-t)-f^{\prime}\right\|_{L^{\infty}(\mathbb{R})} \\
& <\infty
\end{aligned}
$$

due to the Dini-continuity of f^{\prime}, and thus $M_{f} \in C^{1+0}(P)$.

Theorem ([Fernández/Richard/T. 2013]). Let $U \in C^{1+0}(A)$. Assume there exist an open set $\Theta \subset \mathbb{S}^{1}$, a number $a>0$ and $K \in \mathscr{K}(\mathcal{H})$ such that

$$
E^{U}(\Theta) U^{*}[A, U] E^{U}(\Theta) \geq a E^{U}(\Theta)+K
$$

Then, U has at most finitely many eigenvalues in Θ (multiplicities counted), and U has no singular continuous spectrum in Θ.

- The inequality (\star) is called a Mourre estimate for U on Θ.
- The operator A is called a conjugate operator for U on Θ.
- If $K=0$, then U is purely absolutely continuous in $\Theta \cap \sigma(U)$.

3 Skew products of compact Lie groups

- X, G, compact Lie groups with Haar measures μ_{X} and μ_{G}
- $F_{1}: X \rightarrow X$, time-one map of a C^{∞} measure-preserving flow $\left\{F_{t}\right\}_{t \in \mathbb{R}}$ on $\left(X, \mu_{X}\right)$
- $\phi \in C(X ; G)$, continuous function
ϕ induces a cocycle $X \times \mathbb{Z} \ni(x, n) \mapsto \phi^{(n)}(x) \in G$ over F_{1} given by

$$
\phi^{(n)}(x):= \begin{cases}\phi(x)\left(\phi \circ F_{1}\right)(x) \cdots\left(\phi \circ F_{n-1}\right)(x) & \text { if } n \geq 1 \\ e_{G} & \text { if } n=0 \\ \left(\phi^{(-n)} \circ F_{n}\right)(x)^{-1} & \text { if } n \leq-1\end{cases}
$$

The skew product

$$
T_{\phi}: X \times G \rightarrow X \times G, \quad(x, g) \mapsto\left(F_{1}(x), g \phi(x)\right)
$$

is an automorphism of the measure space $\left(X \times G, \mu_{X} \otimes \mu_{G}\right)$.
We study the continuous spectrum of the corresponding Koopman operator

$$
U_{\phi} \psi:=\psi \circ T_{\phi}, \quad \psi \in \mathcal{H}:=\mathrm{L}^{2}\left(X \times G, \mu_{X} \otimes \mu_{G}\right),
$$

in the spirit of [Anzai 1951], [Iwanik/Lemańzyk/Rudolph 1993], [Fraczek 2000/2004], ...

The Peter-Weyl theorem induces the orthogonal decomposition

$$
\mathcal{H}=\bigoplus_{\pi \in \widehat{G}} \bigoplus_{j=1}^{d_{\pi}} \mathcal{H}_{j}^{(\pi)}, \quad \mathcal{H}_{j}^{(\pi)}:=\left\{\sum_{k=1}^{d_{\pi}} \varphi_{k} \otimes \pi_{j k} \mid \varphi_{k} \in \mathrm{~L}^{2}\left(X, \mu_{X}\right)\right\}
$$

where

- \widehat{G} is the set of all equivalence classes of finite-dimensional irreducible unitary representations (IUR) of G,
- $\pi_{j k} \in \mathrm{~L}^{2}\left(G, \mu_{G}\right)$ are the matrix elements of $\pi \in \widehat{G}$.
U_{ϕ} is reduced by the decomposition, and $U_{\pi, j}:=\left.U_{\phi}\right|_{\mathcal{H}_{j}^{(\pi)}}$ is given by

$$
U_{\pi, j} \sum_{k=1}^{d_{\pi}} \varphi_{k} \otimes \pi_{j k}=\sum_{k, \ell=1}^{d_{\pi}}\left(\varphi_{k} \circ F_{1}\right)\left(\pi_{\ell k} \circ \phi\right) \otimes \pi_{j \ell}, \quad \varphi_{k} \in \mathrm{~L}^{2}\left(X, \mu_{X}\right) .
$$

\rightarrow The problem reduces to the study of the continuous spectrum of the operators $U_{\pi, j}$.

4 The conjugate operator

Let $\left\{V_{t}\right\}_{t \in \mathbb{R}}$ be the unitary group

$$
V_{t} \varphi:=\varphi \circ F_{t}, \quad \varphi \in \mathrm{~L}^{2}\left(X, \mu_{X}\right),
$$

and $H=-i \mathscr{L}_{Y}$ its self-adjoint generator (Y is the divergence-free vector field associated to $\left\{F_{t}\right\}_{t \in \mathbb{R}}$ and \mathscr{L}_{Y} its Lie derivative).

The operator

$$
A \sum_{k=1}^{d_{\pi}} \varphi_{k} \otimes \pi_{j k}:=\sum_{k=1}^{d_{\pi}} a_{k} H \varphi_{k} \otimes \pi_{j k}, \quad a_{k} \in \mathbb{R}, \varphi_{k} \in C^{\infty}(X),
$$

is essentially self-adjoint in $\mathcal{H}_{j}^{(\pi)}$.

Assumption. For each k, ℓ, the function $\pi_{k \ell} \circ \phi \in C(X ; \mathbb{C})$ has a derivative $\mathscr{L}_{Y}\left(\pi_{k \ell} \circ \phi\right)$ which is Dini-continuous along the flow:

$$
\int_{0}^{1} \frac{\mathrm{~d} t}{t}\left\|\mathscr{L}_{Y}\left(\pi_{k \ell} \circ \phi\right) \circ F_{t}-\mathscr{L}_{Y}\left(\pi_{k \ell} \circ \phi\right)\right\|_{L^{\infty}(X)}<\infty
$$

and $\left(a_{k}-a_{\ell}\right)\left(\pi_{\ell k} \circ \phi\right) \equiv 0$.

Then, one has $U_{\pi, j} \in C^{1+0}(A)$ with $\left[A, U_{\pi, j}\right]=M U_{\pi, j}$ and $M \sum_{k=1}^{d_{\pi}} \varphi_{k} \otimes \pi_{j k}:=\sum_{k, \ell=1}^{d_{\pi}} M_{k \ell} \varphi_{\ell} \otimes \pi_{j k}, \quad M_{k \ell}:=-i a_{k}\left\{\mathscr{L}_{Y}(\pi \circ \phi) \cdot\left(\pi^{*} \circ \phi\right)\right\}_{k \ell}$.
(M is a hermitian matrix-valued multiplication operator in $\mathcal{H}_{j}^{(\pi)}$)

So, one has

$$
\left(U_{\pi, j}\right)^{*}\left[A, U_{\pi, j}\right]=\left(U_{\pi, j}\right)^{*} M U_{\pi, j},
$$

and one gets a global Mourre estimate

$$
\left(U_{\pi, j}\right)^{*}\left[A, U_{\pi, j}\right] \geq \lambda_{*} \quad \text { if } \quad M \geq \lambda_{*}>0
$$

Let's see a refinement of this idea taking into account the possible ergodicity of F_{1}.

The average of A along the flow generated by $U_{\pi, j}$ is a self-adjoint operator:
$A_{N} \varphi:=\frac{1}{N} \sum_{n=0}^{N-1}\left(U_{\pi, j}\right)^{n} A\left(U_{\pi, j}\right)^{-n} \varphi, \quad N \in \mathbb{N} \geq 1, \varphi \in \mathcal{D}\left(A_{N}\right):=\mathcal{D}(A)$.
One obtains $U_{\pi, j} \in C^{1+0}\left(A_{N}\right)$ with $\left[A_{N}, U_{\pi, j}\right]=M_{N} U_{\pi, j}$ where

$$
M_{N}:=\frac{1}{N} \sum_{n=0}^{N-1}\left(\pi \circ \phi^{(n)}\right)\left(M \circ F_{n}\right)\left(\pi^{*} \circ \phi^{(n)}\right)
$$

(M_{N} is an average of M; we will come back to this)

With the notation

$$
\lambda_{*, N}:=\inf _{k \in\left\{1, \ldots, d_{\pi}\right\}, x \in X} \lambda_{k}\left(M_{N}(x)\right)
$$

one thus obtains:
Theorem ([T. 2013]). Suppose that the previous assumptions are satisfied and assume that $\lambda_{*, N}>0$ for some $N \in \mathbb{N}_{\geq 1}$. Then, $U_{\pi, j}$ satisfies the global Mourre estimate

$$
\left(U_{\pi, j}\right)^{*}\left[A_{N}, U_{\pi, j}\right] \geq \lambda_{*, N}
$$

and $U_{\pi, j}$ has purely absolutely continuous spectrum.

Remark (Topological degree). One has

$$
M_{N}=\cdots=D_{a} \frac{1}{N} \mathscr{L}_{Y}\left((\pi \circ \phi)^{(N)}\right) \cdot\left((\pi \circ \phi)^{(N)}\right)^{*}
$$

with

$$
D_{a}:=-i \operatorname{diag}\left(a_{1}, \ldots, a_{d_{\pi}}\right)
$$

Thus, if $N \gg 1, M_{N}$ is close to D_{a} times the (matricial) topological degree of $\pi \circ \phi$.

So, the condition $\lambda_{*, N}>0$ means that the topological degree of $\pi \circ \phi$ has nonzero determinant, in which case U_{ϕ} has purely absolutely continuous spectrum in the subspace associated to π.

We can apply the theorem to various cases where the IUR of G are known.

For instance, we can treat the cases where F_{1} is an ergodic translation on $X=\mathbb{T}^{d}$ and

- $G=\mathbb{T}^{d^{\prime}}$,
- $G=\operatorname{SU}(2)$,
- $G=\mathrm{U}(2)$

5 The case $\mathbb{T} \times \operatorname{SU}(2)$

Take $X=\mathbb{T}$ and $G=\operatorname{SU}(2)$, let

$$
\pi^{(n)}: \mathrm{SU}(n) \rightarrow \mathrm{U}\left(V_{n}\right) \simeq \mathrm{U}(n+1)
$$

be a $(n+1)$-dimensional IUR of $\operatorname{SU}(n)$ on the vector space V_{n} of homogeneous polinomials of degree n in two variables, and set

$$
F_{t}(x):=x+t y(\bmod \mathbb{Z}), \quad t \in \mathbb{R}, x \in \mathbb{T}, y \in \mathbb{R} \backslash \mathbb{Q}
$$

Suppose that

$$
\phi(x):=h\left(\begin{array}{c}
\mathrm{e}^{2 \pi i(b x+\eta(x))} \\
0
\end{array} \mathrm{e}^{-2 \pi i(b x+\eta(x))}\right) h^{*}, \quad x \in \mathbb{T},
$$

with $h \in \operatorname{SU}(2), b \in \mathbb{Z} \backslash\{0\}$ and $\eta \in C^{1}(\mathbb{T} ; \mathbb{R})$ such that

$$
\int_{0}^{1} \frac{\mathrm{~d} t}{t}\left\|\eta^{\prime} \circ F_{t}-\eta^{\prime}\right\|_{\mathrm{L}^{\infty}(\mathbb{T})}<\infty
$$

Then,

$$
M_{j k}=\cdots=(\text { something frightening }) \cdot \delta_{j k}
$$

but we can choose the scalars a_{j} so that we get

$$
M_{j k}=\left(1+(y b)^{-1} \eta^{\prime}\right)(2 j-n)^{2} \delta_{j k}
$$

It follows by unique ergodicity of F_{1} that

$$
\begin{aligned}
& \lim _{N \rightarrow \infty} M_{N}=\left(1+(y b)^{-1}\right. \\
&\left.\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{m=0}^{N-1} \eta^{\prime} \circ F_{m}\right)\left(\begin{array}{ccc}
(2 \cdot 0-n)^{2} & & 0 \\
& \ddots & \\
0 & & (2 \cdot n-n)^{2}
\end{array}\right) \\
&=\left(\begin{array}{ccc}
(2 \cdot 0-n)^{2} & & 0 \\
0 & \ddots & \\
0 & & \\
& (2 \cdot n-n)^{2}
\end{array}\right)
\end{aligned}
$$

uniformly on \mathbb{T}.

So, M_{N} is strictly postive if $n \in 2 \mathbb{N}+1$ and $N \gg 1$, and thus

$$
\lambda_{*, N}>0 \text { if } N \gg 1 .
$$

Therefore, the theorem applies and $U_{\pi^{(n)}, j}, j \in\{0, \ldots, n\}$, has purely absolutely continuous spectrum (in fact Lebesgue spectrum).

It follows that the restriction of U_{ϕ} to the subspace

$$
\bigoplus_{n \in 2 \mathbb{N}+1} \bigoplus_{j=0}^{n} \mathcal{H}_{j}^{\left(\pi^{(n)}\right)} \subset \mathcal{H}
$$

has countable Lebesgue spectrum.

6 References

- C. Fernández, S. Richard, and R. Tiedra. Commutator methods for unitary operators. J. Spectr. Theory, 2013
- K. Fraczek. On cocycles with values in the group SU(2). Monatsh. Math., 2000
- A. Iwanik, M. Lemańczyk, and C. Mauduit. Absolutely continuous cocycles over irrational rotations. Israel J. Math., 1993
- R. Tiedra. The absolute continuous spectrum of skew products of compact Lie groups. to appear in Israel J. Math.

