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1 One-dimensional Heisenberg model
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Z., one-dimensional lattice of Spins—%

(e® e!}:={(0,1),(1,0)}, basis of the spin—% Hilbert space C?
F(Z) :={ax:Z — {0,1} : supp(«) is finite}, “spins configurations

space”
e* = [e*™¥)) .. a € F(Z), pure state of the spins chain
e* . xp(x) := 0 Vx € Z, fundamental state with all spins down

Hilbert space (incomplete tensorial product indexed by e*?) :

X0
L= ® C2 = closed span{e® : « € F(Z))

XEZ

(Von Neumann, 1939)
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One-dimensional ferromagnetic Heisenberg Hamiltonian :

] x) _(y) | (x) (u) |, (%) _(u)
Li=—5 > o770 + 00y + 030y — 1]

[x—y|=1

O'ng) acts in L as the identitiy on each factor (Cf}, except on Ci,

where it acts as the Pauli matrix oj.

(Streater, 70’s)
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The Heisenberg Hamiltonian is unitarily equivalent to a finite
difference operator L acting in £2[F(Z)] :

For & € F(Z), x € supp(«), uy € supp(«), and &5 € F(Z) such that
supp(a ) = supp(a) U {y}\ {x}, we have

CH)=-2 Y alx) 1 —aly)] [fla¥) - f(a)]

Ix—yl=1

for each f € £2[F(Z)].

Remark 1.1. The subspace Hn = L?[Fn(Z)], where
FN(Z) :={ax € F(Z) : #supp(a) = N}, is left invariant by L.

Thus we study the (bounded) Heisenberg Hamiltonian in the

N-magnons sector :
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2 ‘“Generalized” Toeplitz algebras

— X, discrete abelian group (not necessarily ordered)
— E, nonvoid subset of X (not necessarily the positive cone of X)

— PE:¢?(X) = £%(E), orthogonal projection

For 1 € X, we define the unitary operator (bilateral shift) u, in
22 (X) :
(unf) (&) :=f(E—m), fel?(X), £eX

We also have the partial isometries (unilateral shift) v in €%(E) :

vﬁ = PEun 02 (E).



Definition 2.1. The C*-algebra TF(X) C B*(E)] generated by
the famaly {vﬁ }nex 1s called Toeplitz algebra for the group X
w.r.t. the subset E.

Example 2.2. 7 :=TYN(Z) (=T%+(Z))

Example 2.3. 7, := 7 G+ (zm) (Murphy, 90’s),

lex

Example 2.4. 7<(ZN) := T2E (ZN), where
ZN = {(x1,...,xNn) €ZN 1 x1 <x2 < -+ < xN}

If @ € £'(X), then the algebra 7 F(X) contains the “Toeplitz

operators”
Tg =) oMmv,
neX

and the “potentials”

VE:=Y omal =) emp (V)"

nex nex
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— S is the collection of vectors {sii}]i\; C ZN with componants
(Sg:)j — :|:61)'.

Proposition 2.5. The Hamiltonian Hy s unitarily equivalent to

the operator T5 + Vi, € T<(ZN), where ¢ := —2xs and ) := 2Xs.

Sketch of the proof. Conjugate Hy by the unitary operator
O:HNn = (ZY), fofod,
where ¢ : Z% — Fn(Z), (XT5 e ey XND = Xixg o xn ) []

Remark 2.6. (a) Some spectral and progation properties of Hn
can be deduced directly from the structure of T =(ZN).

(b) When studying the algebra T=(Z"N), one studies all operators
belonging to it (not only the Heisenberg Hamiltonian).
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3 Structure of 7<(ZN)

e Group automorphism
0:2" = ZN, (y1,...,yn) = (U1,U2 = VY1, , Un —Yn_1)
e Foreach Tt € T, u(t): ¢"(ZN) = £1(ZN—1) is defined by

[H(T)p](ZZM")ZN) = [1921(poe_])](T)ZZ)"'azN))

where .%; is the partial Fourier transform in the j*® variable
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Lemma 3.1. The C*-algebras T<(ZN) and C(T) @ T®N=1) gre
isomorphic. The isomorphism sends Tg + Vj onto the direct
integral
v N—1 N—1
JT dt (Tu(ﬂcp - Vu(O)tl)) )

where the exponant of the Toeplitz operators refers to the subset
(N*)N=1 of the group ZN-1.

Outline of the proof. We use the following facts.

(A) If 8: X — X’ is a group isomorphism sending E C X onto
E’ c X/, then 75(X) and 7% (X’) are isomorphic.

(B) If Ej is a subset of a group Xj,j=1,...,k, then
TE>E(Xy x -+ x Xy ) can be identified to the (spatial)
tensorial product ®}<:1 75 (X;). [
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Remark 3.2. The occurrence of direct integrals is related to the

invariance of the operators under the natural action of the group Z
on ZY .

Corollary 3.3. For all real functions @, € L' (ZN), we have

Oess (T +V5) = 0(Tg + Vi) = U o(The)e + Viiorw):
TeT
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4 Essential spectrum of the fiber

Hamiltonians

e Foreacht e T,je{2,...,N}, vj(1): PH(ZN=1) = ' (ZN2) s
defined by

[’Vj(T)p](ZZ,...,Zj_],Zj_|_],...,ZN)

= (gjp)(ZZ,...,Zj_],T,Zj+],...,ZN)

e X;i(t,T’), spectrum of the Toeplitz operator (associated to the
pair) {ZN~2, (N*)N=2})

acting in £2[(N*)N—2].
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Theorem 4.1. Let @, € {'(ZN) be real functions and T € T.

Then we have
N
Oess (TR + Vitow) = U U Ei(m, 7).
j=2T’€T
Outline of the proof. Do the quotient of 7®N=1) Ly
[0 (N)]@(N=1), m
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5 Non propagation estimates

We apply the following result which can be formulated rigourously
in terms of ideals of the C*-algebra 7 <(ZN) [Amrein, Purice,
Mantoiu, 2002].

If k is a real continuous function with appropriate support, there exists
a natural family of multiplication operators {Xn lnen in ‘Hn satisfying
the following property :

At energies in supp(k), the system described by Hy stays “out of
supp(Xn)” uniformly in time.
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— supp(f; H), spectral support of a vector f (in a Hilbert space H)
w.r.t. a selfadjoint operator H in 'H

- Qj(n) ={(y1,...,un) € ZY 1 y; —yj—1 > n}

Proposition 5.1. Let @, € {1 (ZN) be real functions and
j €1{2,...,N}. Then, for each ¢ > 0, there exists n, € N such that

Ixa; e T Te HValf|| < ¢f)

for eachn >n., t € R, and each f € (*(ZY) satisfying

supp (f; To + Vj) N [UT’T,ETZ]- (t,7")] = @.
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Physical interpretation :

If f is a normalized initial state with energy outside
UTﬂaeTZjﬁgﬂﬁ), the decomposition of the system into two
clusters of spins pointing up, one ‘‘at the left’’,
composed of j— 1 elements, and the other one ‘‘at the
right’’, composed of N —j+4 1 elements, is highly
unprobable wuniformly in time if the distance n between

the clusters 1s large enough.
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6 Current prospects, open problems

e Obtaining more accurate spectral and scattering properties.

Mourre estimate.

e Generalization to the lattice Z™ in order to treat the
m-dimensional Heisenberg model. In this case, Toeplitz
algebras do not constitute a suitable mathematical

framework.

e Studying directly finite difference operators (Laplacian,
adjacency matrix, etc) on more general graphs (even

convolution operators on locally compact groups).



