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1 One-dimensional Heisenberg model
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– Z, one-dimensional lattice of spins-12
– {e0, e1} := {(0, 1), (1, 0)}, basis of the spin-12 Hilbert space C2

– F(Z) := {α : Z → {0, 1} : supp(α) is finite}, “spins configurations
space”

– eα ≡ {eα(x)}x∈Z, α ∈ F(Z), pure state of the spins chain

– eα0 , α0(x) := 0 ∀x ∈ Z, fundamental state with all spins down

– Hilbert space (incomplete tensorial product indexed by eα0) :

L :=

α0⊗
x∈Z

C
2
x ≡ closed span {eα : α ∈ F(Z)}

(Von Neumann, 1939)
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One-dimensional ferromagnetic Heisenberg Hamiltonian :

L := −
1

2

∑
|x−y|=1

[
σ

(x)
1 σ

(y)
1 + σ

(x)
2 σ

(y)
2 + σ

(x)
3 σ

(y)
3 − 1

]
.

σ
(x)
j acts in L as the identitiy on each factor C

2
y, except on C

2
x,

where it acts as the Pauli matrix σj.

(Streater, 70’s)
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The Heisenberg Hamiltonian is unitarily equivalent to a finite
difference operator L̃ acting in �2[F(Z)] :

For α ∈ F(Z), x ∈ supp(α), y /∈ supp(α), and αyx ∈ F(Z) such that
supp(αyx) = supp(α) � {y} \ {x}, we have

(
L̃f

)
(α) = −2

∑
|x−y|=1

α(x) [1− α(y)]
[
f(αyx) − f(α)

]

for each f ∈ �2[F(Z)].

Remark 1.1. The subspace HN := �2[FN(Z)], where
FN(Z) := {α ∈ F(Z) : #supp(α) = N}, is left invariant by L̃.

Thus we study the (bounded) Heisenberg Hamiltonian in the
N-magnons sector :

HN := L̃ � HN.
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2 “Generalized” Toeplitz algebras

– X, discrete abelian group (not necessarily ordered)
– E, nonvoid subset of X (not necessarily the positive cone of X)
– PE : �2(X) → �2(E), orthogonal projection

For η ∈ X, we define the unitary operator (bilateral shift) uη in
�2(X) :

(uηf) (ξ) := f(ξ− η), f ∈ �2(X), ξ ∈ X.

We also have the partial isometries (unilateral shift) vEη in �2(E) :

vEη := PEuη � �2(E).
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Definition 2.1. The C∗-algebra T E(X) ⊂ B[�2(E)] generated by
the family

{
vEη

}
η∈X is called Toeplitz algebra for the group X

w.r.t. the subset E.

Example 2.2. T := T N(Z) (≡ T Z+(Z))

Example 2.3. Tm := T (Z
m
lex)+(Zmlex) (Murphy, 90’s),

Example 2.4. T <(ZN) := T Z
N
< (ZN), where

ZN< := {(x1, . . . , xN) ∈ ZN : x1 < x2 < · · · < xN}

If ϕ ∈ �1(X), then the algebra T E(X) contains the “Toeplitz
operators”

TEϕ :=
∑
η∈X

ϕ(η)vEη

and the “potentials”

VEϕ :=
∑
η∈X

ϕ(η)qEη ≡
∑
η∈X

ϕ(η)vEη
(
vEη

)∗
.
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– S is the collection of vectors {s±i }Ni=1 ⊂ ZN with componants
(s±i )j := ±δij.

Proposition 2.5. The Hamiltonian HN is unitarily equivalent to
the operator T<ϕ + V<ψ ∈ T <(ZN), where ϕ := −2χS and ψ := 2χS.

Sketch of the proof. Conjugate HN by the unitary operator

Φ : HN → �2(ZN<), f �→ f ◦ φ,

where φ : ZN< → FN(Z), (x1, . . . , xN) �→ χ{x1,...,xN}.

Remark 2.6. (a) Some spectral and progation properties of HN
can be deduced directly from the structure of T <(ZN).

(b) When studying the algebra T <(ZN), one studies all operators
belonging to it (not only the Heisenberg Hamiltonian).



9/17

3 Structure of T <(ZN)

• Group automorphism

θ : Z
N → Z

N, (y1, . . . , yn) �→ (y1, y2 − y1, . . . , yN − yN−1)

• For each τ ∈ T, μ(τ) : �1(ZN) → �1(ZN−1) is defined by

[μ(τ)ρ](z2, . . . , zN) := [F1(ρ ◦ θ−1)](τ, z2, . . . , zN),

where Fj is the partial Fourier transform in the jth variable
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Lemma 3.1. The C∗-algebras T <(ZN) and C(T) ⊗ T ⊗(N−1) are
isomorphic. The isomorphism sends T<ϕ + V<ψ onto the direct
integral ∫⊕

T

dτ
(
TN−1
μ(τ)ϕ + VN−1

μ(0)ψ

)
,

where the exponant of the Toeplitz operators refers to the subset
(N∗)N−1 of the group ZN−1.

Outline of the proof. We use the following facts.

(A) If θ : X → X ′ is a group isomorphism sending E ⊂ X onto
E ′ ⊂ X ′, then T E(X) and T E ′

(X ′) are isomorphic.

(B) If Ej is a subset of a group Xj, j = 1, . . . , k, then
T E1×···×Ek(X1 × · · · × Xk) can be identified to the (spatial)
tensorial product

⊗k
j=1 T Ej(Xj).
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Remark 3.2. The occurrence of direct integrals is related to the
invariance of the operators under the natural action of the group Z

on Z
N
< .

Corollary 3.3. For all real functions ϕ,ψ ∈ �1(ZN), we have

σess

(
T<ϕ + V<ψ

)
= σ

(
T<ϕ + V<ψ

)
=

⋃
τ∈T

σ
(
TN−1
μ(τ)ϕ + VN−1

μ(0)ψ

)
.
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4 Essential spectrum of the fiber

Hamiltonians

• For each τ ∈ T, j ∈ {2, . . . , N}, νj(τ) : �1(ZN−1) → �1(ZN−2) is
defined by

[νj(τ)ρ](z2, . . . , zj−1, zj+1, . . . , zN)

:= (Fjρ)(z2, . . . , zj−1, τ, zj+1, . . . , zN)

• Σj(τ, τ ′), spectrum of the Toeplitz operator (associated to the
pair) {ZN−2, (N∗)N−2})

TN−2
νj(τ ′)μ(τ)ϕ + VN−2

νj(0)μ(0)ψ

acting in �2[(N∗)N−2].
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Theorem 4.1. Let ϕ,ψ ∈ �1(ZN) be real functions and τ ∈ T.
Then we have

σess

(
TN−1
μ(τ)ϕ + VN−1

μ(0)ψ

)
=

N⋃
j=2

⋃
τ ′∈T

Σj(τ, τ
′).

Outline of the proof. Do the quotient of T ⊗(N−1) by
K [�2(N)]⊗(N−1).
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5 Non propagation estimates

We apply the following result which can be formulated rigourously
in terms of ideals of the C∗-algebra T <(ZN) [Amrein, Purice,
Măntoiu, 2002].

If κ is a real continuous function with appropriate support, there exists

a natural family of multiplication operators {χn}n∈N in HN satisfying

the following property :

At energies in supp(κ), the system described by HN stays “out of

supp(χn)” uniformly in time.
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– supp(f;H), spectral support of a vector f (in a Hilbert space H)
w.r.t. a selfadjoint operator H in H

– Ωj(n) :=
{
(y1, . . . , yN) ∈ Z

N
< : yj − yj−1 ≥ n

}

Proposition 5.1. Let ϕ,ψ ∈ �1(ZN) be real functions and
j ∈ {2, . . . , N}. Then, for each ε > 0, there exists nε ∈ N such that

∥∥χΩj(n)e
−it(T<ϕ+V<ψ )f

∥∥ ≤ ε‖f‖

for each n ≥ nε, t ∈ R, and each f ∈ �2(ZN<) satisfying

supp
(
f; T<ϕ + V<ψ

)
∩

[⋃
τ,τ ′∈T

Σj(τ, τ
′)

]
= ∅.
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Physical interpretation :

If f is a normalized initial state with energy outside

∪τ,τ ′∈TΣj(τ, τ
′), the decomposition of the system into two

clusters of spins pointing up, one ‘‘at the left’’,

composed of j− 1 elements, and the other one ‘‘at the

right’’, composed of N− j+ 1 elements, is highly

unprobable uniformly in time if the distance n between

the clusters is large enough.
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6 Current prospects, open problems

• Obtaining more accurate spectral and scattering properties.
Mourre estimate.

• Generalization to the lattice Zm in order to treat the
m-dimensional Heisenberg model. In this case, Toeplitz
algebras do not constitute a suitable mathematical
framework.

• Studying directly finite difference operators (Laplacian,
adjacency matrix, etc) on more general graphs (even
convolution operators on locally compact groups).


