Toeplitz algebras and spectral results for the one-dimensional Heisenberg model

Rafael Tiedra (Université de Cergy-Pontoise)

CSMT2007, March 2007

Collaborators : Mondher Damak (Université de Sfax), Marius Măntoiu (IMAR, Bucharest)

1 One-dimensional Heisenberg model

- $-\mathbb{Z}$, one-dimensional lattice of spins- $\frac{1}{2}$
- $\{e^0, e^1\} := \{(0, 1), (1, 0)\}$, basis of the spin- $\frac{1}{2}$ Hilbert space \mathbb{C}^2
- $\ \mathbb{F}(\mathbb{Z}) := \{ \alpha : \mathbb{Z} \to \{0, 1\} : \operatorname{supp}(\alpha) \text{ is finite} \}, \text{ "spins configurations space"}$
- $-e^{\alpha} \equiv \{e^{\alpha(x)}\}_{x \in \mathbb{Z}}, \ \alpha \in \mathbb{F}(\mathbb{Z}), \text{ pure state of the spins chain}$
- $-\ e^{\alpha_0}, \ \alpha_0(x):=0 \ \forall x\in \mathbb{Z}, \ {\rm fundamental \ state \ with \ all \ spins \ down$
- Hilbert space (incomplete tensorial product indexed by e^{α_0}) :

$$\mathcal{L} := \bigotimes_{x \in \mathbb{Z}}^{\alpha_0} \mathbb{C}_x^2 \equiv \text{closed span} \{ e^{\alpha} : \alpha \in \mathbb{F}(\mathbb{Z}) \}$$

(Von Neumann, 1939)

One-dimensional ferromagnetic Heisenberg Hamiltonian :

$$L := -\frac{1}{2} \sum_{|\mathbf{x}-\mathbf{y}|=1} \left[\sigma_1^{(\mathbf{x})} \sigma_1^{(\mathbf{y})} + \sigma_2^{(\mathbf{x})} \sigma_2^{(\mathbf{y})} + \sigma_3^{(\mathbf{x})} \sigma_3^{(\mathbf{y})} - 1 \right].$$

 $\sigma_j^{(x)}$ acts in \mathcal{L} as the identity on each factor \mathbb{C}_y^2 , except on \mathbb{C}_x^2 , where it acts as the Pauli matrix σ_j .

(Streater, 70's)

The Heisenberg Hamiltonian is unitarily equivalent to a finite difference operator \widetilde{L} acting in $\ell^2[\mathbb{F}(\mathbb{Z})]$:

For $\alpha \in \mathbb{F}(\mathbb{Z})$, $x \in \operatorname{supp}(\alpha)$, $y \notin \operatorname{supp}(\alpha)$, and $\alpha_x^y \in \mathbb{F}(\mathbb{Z})$ such that $\operatorname{supp}(\alpha_x^y) = \operatorname{supp}(\alpha) \sqcup \{y\} \setminus \{x\}$, we have

$$(\widetilde{L}f)(\alpha) = -2\sum_{|x-y|=1} \alpha(x) [1 - \alpha(y)] [f(\alpha_x^y) - f(\alpha)]$$

for each $f \in \ell^2[\mathbb{F}(\mathbb{Z})]$.

Remark 1.1. The subspace $\mathcal{H}_{N} := \ell^{2}[\mathbb{F}_{N}(\mathbb{Z})]$, where $\mathbb{F}_{N}(\mathbb{Z}) := \{ \alpha \in \mathbb{F}(\mathbb{Z}) : \# \operatorname{supp}(\alpha) = N \}$, is left invariant by \widetilde{L} .

Thus we study the (bounded) Heisenberg Hamiltonian in the N-magnons sector :

 $H_{N} := \widetilde{L} \upharpoonright \mathcal{H}_{N}.$

2 "Generalized" Toeplitz algebras

- X, discrete abelian group (not necessarily ordered)
- E, nonvoid subset of X (not necessarily the positive cone of X)
- $P^{E}: \ell^{2}(X) \rightarrow \ell^{2}(E)$, orthogonal projection

For $\eta \in X,$ we define the unitary operator (bilateral shift) u_η in $\ell^2(X)$:

$$(u_\eta f)\,(\xi):=f(\xi-\eta)\,,\quad f\in\ell^2(X),\ \xi\in X.$$

We also have the partial isometries (unilateral shift) ν_{η}^{E} in $\ell^{2}(E)$:

$$\nu_{\eta}^{\mathsf{E}} := \mathsf{P}^{\mathsf{E}} \mathfrak{u}_{\eta} \restriction \ell^{2}(\mathsf{E}).$$

Definition 2.1. The C*-algebra $\mathcal{T}^{E}(X) \subset \mathscr{B}[\ell^{2}(E)]$ generated by the family $\{v_{\eta}^{E}\}_{\eta \in X}$ is called **Toeplitz algebra for the group X** *w.r.t. the subset* E.

Example 2.2. $\mathcal{T} := \mathcal{T}^{\mathbb{N}}(\mathbb{Z}) \ (\equiv \mathcal{T}^{\mathbb{Z}_{+}}(\mathbb{Z}))$ Example 2.3. $\mathcal{T}_{m} := \mathcal{T}^{(\mathbb{Z}_{lex}^{m})_{+}}(\mathbb{Z}_{lex}^{m}) \ (Murphy, 90's),$ Example 2.4. $\mathcal{T}^{<}(\mathbb{Z}^{N}) := \mathcal{T}^{\mathbb{Z}_{<}^{N}}(\mathbb{Z}^{N}), where$ $\mathbb{Z}_{<}^{N} := \{(x_{1}, \dots, x_{N}) \in \mathbb{Z}^{N} : x_{1} < x_{2} < \dots < x_{N}\}$

If $\varphi \in \ell^1(X)$, then the algebra $\mathcal{T}^{\mathsf{E}}(X)$ contains the "Toeplitz operators"

$$\mathsf{T}^{\mathsf{E}}_{\varphi} := \sum_{\eta \in X} \varphi(\eta) \mathsf{v}^{\mathsf{E}}_{\eta}$$

and the "potentials"

$$V_{\phi}^{\mathsf{E}} := \sum_{\eta \in X} \phi(\eta) \mathfrak{q}_{\eta}^{\mathsf{E}} \equiv \sum_{\eta \in X} \phi(\eta) \nu_{\eta}^{\mathsf{E}} \left(\nu_{\eta}^{\mathsf{E}} \right)^{*}.$$

- S is the collection of vectors $\{s_i^{\pm}\}_{i=1}^N \subset \mathbb{Z}^N$ with componants $(s_i^{\pm})_j := \pm \delta_{ij}$.

Proposition 2.5. The Hamiltonian H_N is unitarily equivalent to the operator $T_{\phi}^{<} + V_{\psi}^{<} \in \mathcal{T}^{<}(\mathbb{Z}^N)$, where $\phi := -2\chi_S$ and $\psi := 2\chi_S$.

Sketch of the proof. Conjugate H_N by the unitary operator

$$\Phi: \mathcal{H}_{\mathsf{N}} \to \ell^{2}(\mathbb{Z}^{\mathsf{N}}_{<}), \quad \mathsf{f} \mapsto \mathsf{f} \circ \varphi,$$

where $\phi : \mathbb{Z}_{<}^{\mathsf{N}} \to \mathbb{F}_{\mathsf{N}}(\mathbb{Z}), (x_{1}, \ldots, x_{\mathsf{N}}) \mapsto \chi_{\{x_{1}, \ldots, x_{\mathsf{N}}\}}.$

Remark 2.6. (a) Some spectral and progation properties of H_N can be deduced directly from the structure of $\mathcal{T}^{<}(\mathbb{Z}^N)$.

(b) When studying the algebra $\mathcal{T}^{<}(\mathbb{Z}^{N})$, one studies **all** operators belonging to it (not only the Heisenberg Hamiltonian).

3 Structure of $\mathcal{T}^{<}(\mathbb{Z}^{N})$

• Group automorphism

 $\theta: \mathbb{Z}^N \to \mathbb{Z}^N, \quad (y_1, \dots, y_n) \mapsto (y_1, y_2 - y_1, \dots, y_N - y_{N-1})$

• For each $\tau\in\mathbb{T},\,\mu(\tau):\ell^1(\mathbb{Z}^N)\to\ell^1(\mathbb{Z}^{N-1})$ is defined by

$$[\mu(\tau)\rho](z_2,\ldots,z_N):=[\mathscr{F}_1(\rho\circ\theta^{-1})](\tau,z_2,\ldots,z_N),$$

where \mathscr{F}_{j} is the partial Fourier transform in the j^{th} variable

Lemma 3.1. The C^{*}-algebras $\mathcal{T}^{<}(\mathbb{Z}^{N})$ and $C(\mathbb{T}) \otimes \mathcal{T}^{\otimes (N-1)}$ are isomorphic. The isomorphism sends $T_{\phi}^{<} + V_{\psi}^{<}$ onto the direct integral

$$\int_{\mathbb{T}}^{\oplus} \mathrm{d}\tau \left(\mathsf{T}_{\mu(\tau)\phi}^{\mathsf{N}-1} + \mathsf{V}_{\mu(0)\psi}^{\mathsf{N}-1} \right),$$

where the exponant of the Toeplitz operators refers to the subset $(\mathbb{N}^*)^{N-1}$ of the group \mathbb{Z}^{N-1} .

Outline of the proof. We use the following facts.

- (A) If $\theta: X \to X'$ is a group isomorphism sending $E \subset X$ onto $E' \subset X'$, then $\mathcal{T}^{E}(X)$ and $\mathcal{T}^{E'}(X')$ are isomorphic.
- (B) If E_j is a subset of a group X_j , j = 1, ..., k, then $\mathcal{T}^{E_1 \times \cdots \times E_k}(X_1 \times \cdots \times X_k)$ can be identified to the (spatial) tensorial product $\bigotimes_{j=1}^k \mathcal{T}^{E_j}(X_j)$.

Remark 3.2. The occurrence of direct integrals is related to the invariance of the operators update the natural action of the aroun \mathbb{Z}

invariance of the operators under the natural action of the group \mathbb{Z} on \mathbb{Z}^{N}_{\leq} .

Corollary 3.3. For all real functions $\phi, \psi \in \ell^1(\mathbb{Z}^N)$, we have

$$\sigma_{\mathrm{ess}}\big(\mathsf{T}_{\phi}^{<}+\mathsf{V}_{\psi}^{<}\big)=\sigma\big(\mathsf{T}_{\phi}^{<}+\mathsf{V}_{\psi}^{<}\big)=\bigcup_{\tau\in\mathbb{T}}\sigma\big(\mathsf{T}_{\mu(\tau)\phi}^{\mathsf{N}-1}+\mathsf{V}_{\mu(0)\psi}^{\mathsf{N}-1}\big).$$

4 Essential spectrum of the fiber Hamiltonians

• For each $\tau \in \mathbb{T}$, $j \in \{2, \dots, N\}$, $\nu_j(\tau) : \ell^1(\mathbb{Z}^{N-1}) \to \ell^1(\mathbb{Z}^{N-2})$ is defined by

$$[\nu_{j}(\tau)\rho](z_{2},\ldots,z_{j-1},z_{j+1},\ldots,z_{N})$$
$$:=(\mathscr{F}_{j}\rho)(z_{2},\ldots,z_{j-1},\tau,z_{j+1},\ldots,z_{N})$$

• $\Sigma_j(\tau, \tau')$, spectrum of the Toeplitz operator (associated to the pair) { \mathbb{Z}^{N-2} , (\mathbb{N}^*)^{N-2}})

$$T^{N-2}_{\nu_{j}(\tau')\mu(\tau)\phi} + V^{N-2}_{\nu_{j}(0)\mu(0)\psi}$$

acting in $\ell^2[(\mathbb{N}^*)^{N-2}]$.

Theorem 4.1. Let $\phi, \psi \in \ell^1(\mathbb{Z}^N)$ be real functions and $\tau \in \mathbb{T}$. Then we have

$$\sigma_{\mathrm{ess}} \big(T^{N-1}_{\mu(\tau)\phi} + V^{N-1}_{\mu(0)\psi} \big) = \bigcup_{\mathfrak{j}=2}^{N} \bigcup_{\tau' \in \mathbb{T}} \Sigma_{\mathfrak{j}}(\tau,\tau').$$

Outline of the proof. Do the quotient of $\mathcal{T}^{\otimes (N-1)}$ by $\mathscr{K}[\ell^2(\mathbb{N})]^{\otimes (N-1)}$.

5 Non propagation estimates

We apply the following result which can be formulated rigourously in terms of ideals of the C^{*}-algebra $\mathcal{T}^{<}(\mathbb{Z}^{N})$ [Amrein, Purice, Măntoiu, 2002].

If κ is a real continuous function with appropriate support, there exists a natural family of multiplication operators $\{\chi_n\}_{n\in\mathbb{N}}$ in \mathcal{H}_N satisfying the following property :

At energies in ${\rm supp}(\kappa),$ the system described by H_N stays "out of ${\rm supp}(\chi_n)$ " uniformly in time.

- $\begin{array}{l} \ {\rm supp}(f;H), \ {\rm spectral \ support \ of \ a \ vector \ f \ (in \ a \ Hilbert \ {\rm space \ } \mathcal{H})} \\ {\rm w.r.t. \ a \ selfadjoint \ operator \ H \ in \ } \mathcal{H} \end{array}$
- $\Omega_{j}(n) := \left\{ (y_{1}, \dots, y_{N}) \in \mathbb{Z}_{<}^{N} : y_{j} y_{j-1} \ge n \right\}$

Proposition 5.1. Let $\varphi, \psi \in \ell^1(\mathbb{Z}^N)$ be real functions and $j \in \{2, ..., N\}$. Then, for each $\varepsilon > 0$, there exists $n_{\varepsilon} \in \mathbb{N}$ such that $\|\chi_{\Omega_j(n)} e^{-it(T_{\varphi}^< + V_{\psi}^<)} f\| \le \varepsilon \|f\|$

for each $n \ge n_{\varepsilon}$, $t \in \mathbb{R}$, and each $f \in \ell^2(\mathbb{Z}^N_{<})$ satisfying

$$\operatorname{supp}\left(\mathsf{f};\mathsf{T}_{\phi}^{<}+V_{\psi}^{<}\right)\cap\left[\bigcup_{\tau,\tau'\in\mathbb{T}}\Sigma_{\mathfrak{j}}(\tau,\tau')\right]=\varnothing.$$

Physical interpretation :

If f is a normalized initial state with energy outside $\cup_{\tau,\tau'\in\mathbb{T}}\Sigma_j(\tau,\tau')$, the decomposition of the system into two clusters of spins pointing up, one ''at the left'', composed of j-1 elements, and the other one ''at the right'', composed of N-j+1 elements, is highly unprobable uniformly in time if the distance n between the clusters is large enough.

16/17

6 Current prospects, open problems

- Obtaining more accurate spectral and scattering properties. Mourre estimate.
- Generalization to the lattice Z^m in order to treat the m-dimensional Heisenberg model. In this case, Toeplitz algebras do not constitute a suitable mathematical framework.
- Studying directly finite difference operators (Laplacian, adjacency matrix, *etc*) on more general graphs (even convolution operators on locally compact groups).