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Resolvents and smooth operators

Resolvents and smooth operators

• U, unitary operator in a Hilbert space H with spectral measure
EU( ·), singular subspace Hs(U), a.c. subspace Hac(U), projection on
a.c. subspace Pac(U), resolvent

R(z) := (1− zU∗)−1, z ∈ C \ S1,

and (Poisson) operator

δ(r , θ) := 1
2π (1− r2)

∣∣R(r eiθ)
∣∣2, r ∈ (0,∞) \ {1}, θ ∈ [0, 2π).

• U0, unitary operator in a Hilbert space H0 with . . .

• J ∈ B(H0,H), identification operator from H0 to H

• V := JU0 − UJ, two-Hilbert spaces perturbation
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Resolvents and smooth operators

The resolvent of U can be written as a geometric series

R(z) =


∑

n≥0(zU∗)n if |z | < 1

−
∑

n≥1(z−1U)n if |z | > 1,

and one has the identity R(z̄−1)∗ = −zU∗R(z) relating values
inside/outside S1 :
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Resolvents and smooth operators

If G is a Hilbert space, then T ∈ B(H,G) is locally U-smooth on a Borel
set Θ ⊂ [0, 2π) if there is cΘ ≥ 0 such that∑

n∈Z

∥∥T UnEU(Θ)ϕ
∥∥2

G ≤ cΘ ‖ϕ‖2
H for all ϕ ∈ H, (A)

and T is U-smooth if (A) is satisfied with Θ = [0, 2π). Similarly, T is
weakly locally U-smooth on Θ if the weak limit

w-lim
ε↘0

T δ(1− ε, θ)EU(Θ)T ∗ exists for a.e. θ ∈ [0, 2π), (B)

and T is weakly U-smooth if (B) is satisfied with Θ = [0, 2π).

• T locally U-smooth on Θ ⇒ T weakly locally U-smooth on Θ.

• T locally U-smooth on Θ ⇒ EU(Θ)T ∗G∗ ⊂ Hac(U).
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Representation formulas for the wave operators

Representation formulas for the wave operators

Set
g±(ε) := 1

2π

(
1− (1− ε)±2

)
, ε ∈ (0, 1),

and define w±(U,U0, J, ε) ∈ B(H0,H) by the sesquilinear form〈
w±(U,U0, J, ε)ϕ0, ϕ

〉
H

:= ±g±(ε)

∫ 2π

0
dθ
〈
JR0

(
(1− ε)±1 eiθ

)
ϕ0,R

(
(1− ε)±1 eiθ

)
ϕ
〉
H

for ϕ0 ∈ H0 and ϕ ∈ H.
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Representation formulas for the wave operators

Lemma

Let D0 ⊂ H0 and D ⊂ H be dense sets, and assume that for each
ϕ0 ∈ D0 and ϕ ∈ D the limits

a±(ϕ0, ϕ, θ) := ± lim
ε↘0

g±(ε)
〈
JR0

(
(1− ε)±1 eiθ

)
ϕ0,R

(
(1− ε)±1 eiθ

)
ϕ
〉
H

exist for a.e. θ ∈ [0, 2π). Then, the following weak limits exist

w±(U,U0, J) := w-lim
ε↘0

w±(U,U0, J, ε)Pac(U0).

Idea of the proof.

Apply a generalisation of Lebesgue’s dominated convergence theorem
(Vitali’s theorem) to exchange limit and integral.
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Representation formulas for the wave operators

The weak limits w±(U,U0, J) are the stationary wave operators for the
triple (U,U0, J). When they exist, they posses the usual properties of
wave operators

Hs(U0) ⊂ kerw±(U,U0, J) and Ranw±(U,U0, J) ⊂ Hac(U)

and the intertwinning relation 1

w±(U,U0, J)EU0(Θ) = EU(Θ)w±(U,U0, J), Θ ⊂ [0, 2π) Borel set.

1Similar to the self-adjoint case [Yafaev 1992].
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Representation formulas for the wave operators

Assume there exist a Hilbert space G and operators G0 ∈ B(H0,G),
G ∈ B(H,G) such that V = G ∗G0.

Theorem (Stationary wave operators)

Assume that for each ϕ0 in a dense set D0 ⊂ H0

s-lim
ε↘0

G0U
∗
0R0

(
(1− ε)±1 eiθ

)
ϕ0 exist for a.e. θ ∈ [0, 2π),

and suppose that G is weakly U-smooth. Then, the stationary wave
operators w±(U,U0, J) exist and satisfy the representation formulas

〈
w±(U,U0, J)ϕ0, ϕ

〉
H =

∫ 2π

0
dθ a±(ϕ0, ϕ, θ), ϕ0 ∈ D0, ϕ ∈ H.

Idea of the proof.

Use the assumptions on G0 and G to show that a±(ϕ0, ϕ, θ) exist for a.e.
θ ∈ [0, 2π), and apply the previous lemma.
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Representation formulas for the wave operators

Theorem (Strong wave operators)

Assume that for each ϕ0 in a dense set D0 ⊂ H0

s-lim
ε↘0

G0U
∗
0R0

(
(1− ε)±1 eiθ

)
ϕ0 exist for a.e. θ ∈ [0, 2π),

and that B±(θ) := w-limε↘0 GR
(
(1− ε)±1 eiθ

)
G ∗ exist for a.e.

θ ∈ [0, 2π). Then, the strong wave operators

W±(U,U0, J) := s-lim
n→±∞

UnJU−n0 Pac(U0)

exist and coincide with the stationary wave operators w±(U,U0, J).
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Representation formulas for the wave operators

Idea of the proof.

The assumptions on G0 and G guarantee the existence of the operators
W±(U,U0, J) and w±(U,U0, J).

To show that they coincide, one has to use power series for the resolvents
in w±(U,U0, J) to obtain an infinite series involving powers Un and U−n0 ,
and then use a Tauberian theorem to prove that this series converges to

s-lim
n→±∞

UnJU−n0 Pac(U0) = W±(U,U0, J).
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Representation formulas for the wave operators

Example (Trace class perturbation)

The assumptions of the theorem are satisfied for the set D0 = H0 when V
is trace class, or equivalently when the operators G0 and G are
Hilbert-Schmidt.
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Representation formulas for the scattering matrix

Representation formulas for the scattering matrix

If the strong wave operators W±(U,U0, J) exist, then the scattering
operator is defined as

S(U,U0, J) := W+(U,U0, J)∗W−(U,U0, J).

Basic properties :

• S(U,U0, J) � Hs(U0) = 0,

• RanS(U,U0, J) ⊂ Hac(U0),

• If W±(U,U0, J) � Hac(U0) are isometric, then S(U,U0, J) � Hac(U0)
is unitary if and only if RanW−(U,U0, J) = RanW+(U,U0, J).

13 / 25



Representation formulas for the scattering matrix
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Representation formulas for the scattering matrix

Let σ̂0 be a core of the spectrum of U0. Then, there exist for a.e. θ ∈ σ̂0

Hilbert spaces h0(θ) and an operator

F0 : H0 →
∫ ⊕
σ̂0

dθ h0(θ) (spectral transformation),

which is unitary from Hac(U0) to
∫ ⊕
σ̂0

dθ h0(θ), vanishes on Hs(U0), and
diagonalises U0 � Hac(U0). Namely, if

U
(ac)
0 := U0 � Hac(U0) and F

(ac)
0 := F0 � Hac(U0),

then we have the direct integral decomposition

F
(ac)
0 U

(ac)
0

(
F

(ac)
0

)∗
=

∫ ⊕
σ̂0

dθ eiθ .
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Representation formulas for the scattering matrix

Hac(U0) is a reducing subspace for S(U,U0, J) and the restriction

S (ac)(U,U0, J) := S(U,U0, J) � Hac(U0)

commutes with U
(ac)
0 . Thus S (ac)(U,U0, J) decomposes in

∫ ⊕
σ̂0

dθ h0(θ),

that is, there exist for a.e. θ ∈ σ̂0 operators S(θ) ∈ B
(
h0(θ)

)
such that

F
(ac)
0 S (ac)(U,U0, J)

(
F

(ac)
0

)∗
=

∫ ⊕
σ̂0

dθ S(θ).

The family {S(θ)}θ∈σ̂0
is called the scattering matrix for the triple

(U,U0, J).
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Representation formulas for the scattering matrix

Similarly, if the stationary wave operators w±(U0,U0, J
∗J) exist, then

Hac(U0) is a reducing subspace for w±(U0,U0, J
∗J), and

w
(ac)
± (U0,U0, J

∗J) := w±(U0,U0, J
∗J) � Hac(U0)

commutes with U
(ac)
0 . Thus, there exist for a.e. θ ∈ σ̂0 operators

u±(θ) ∈ B
(
h0(θ)

)
such that

F
(ac)
0 w

(ac)
± (U0,U0, J

∗J)
(
F

(ac)
0

)∗
=

∫ ⊕
σ̂0

dθ u±(θ).

Example (One-Hilbert space case)

If H0 = H and J = 1H0 , then one has

w±(U0,U0, J
∗J) = w±(U0,U0, 1H0) = 1H0 ,

and u±(θ) = 1h0(θ) for a.e. θ ∈ σ̂0.
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Representation formulas for the scattering matrix

Theorem (Scattering matrix)

Assume that for each ϕ0 in a dense set D0 ⊂ H0

s-lim
ε↘0

G0U
∗
0R0

(
(1− ε)±1 eiθ

)
ϕ0 exist for a.e. θ ∈ [0, 2π),

that B±(θ) = w-limε↘0 GR
(
(1− ε)±1 eiθ

)
G ∗ exist for a.e. θ ∈ [0, 2π),

and that G0 is weakly U0-smooth. Then, we have for a.e. θ ∈ σ̂0 the
representation formulas for the scattering matrix :

S(θ) = u+(θ) + 2π
(
Z0(θ,GJU0)Z0(θ,G0)∗ − Z0(θ,G0)B+(θ)Z0(θ,G0)∗

)
,

S(θ) = u−(θ)− 2π
(
Z0(θ,G0)Z0(θ,GJU0)∗ − Z0(θ,G0)B−(θ)Z0(θ,G0)∗

)
,

with

Z0(θ,T0)ζ =
(
F0T

∗
0 ζ
)
(θ), T0 ∈ B(H0,G), ζ ∈ G, a.e. θ ∈ σ̂0.
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Representation formulas for the scattering matrix

Idea of the proof.

Apply the results that precede + some integrals calculations.
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Application to anisotropic quantum walks

Application to anisotropic quantum walks

In the Hilbert space

H := `2(Z,C2) =

{
Ψ : Z→ C2 |

∑
x∈Z
‖Ψ(x)‖2

C2 <∞

}
,

the evolution operator of the quantum walk is U := SC with

(SΨ)(x) :=

(
Ψ(0)(x + 1)

Ψ(1)(x − 1)

)
, Ψ =

(
Ψ(0)

Ψ(1)

)
∈ H, x ∈ Z, (shift)

(CΨ)(x) := C (x)Ψ(x), Ψ ∈ H, x ∈ Z, C (x) ∈ U(2). (coin)

The operator U is unitary because S and C are unitary.
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Application to anisotropic quantum walks

C is short-range and anisotropic at infinity :

Assumption (Anisotropic coin)

There exist C`,Cr ∈ U(2), κ`, κr > 0, and ε`, εr > 0 such that∥∥C (x)− C`
∥∥

B(C2)
≤ κ` |x |−1−ε` if x < 0∥∥C (x)− Cr

∥∥
B(C2)

≤ κr |x |−1−εr if x > 0,

with indexes ` for “left” and r for “right”.

Quantum walks satisfying this are called quantum walks with an
anisotropic coin.
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Application to anisotropic quantum walks

The assumption provides operators U? := SC? (? = `, r) describing the
asymptotic behaviour of U on the left and on the right.

It also suggests to define the free evolution operator as

U0 := U` ⊕ Ur in H0 := H⊕H,

and to define the identification operator J : H0 → H as

J(Ψ0) := j`Ψ0,` + jr Ψ0,r, Ψ0 = (Ψ0,`,Ψ0,r) ∈ H0,

with

jr(x) :=

{
1 if x ≥ 0

0 if x ≤ −1
and j` := 1− jr.
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Application to anisotropic quantum walks

If the matrices C? are not anti-diagonal, then U0 has purely a.c. spectrum
and the strong wave operators W±(U,U0, J) exist and are complete
[Richard-Suzuki-T. 2018-2019].

Furthermore, the assumption implies that V is trace class. Thus one can
verify the validity of the representation formulas for the stationary wave
operators and the scattering matrix.
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Application to anisotropic quantum walks

Thank you
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