Stationary scattering theory for unitary operators with an application to quantum walks

Rafael Tiedra de Aldecoa
Pontifical Catholic University of Chile

Santiago, October 2020

Table of Contents

(1) Resolvents and smooth operators
(2) Representation formulas for the wave operators
(3) Representation formulas for the scattering matrix
(4) Application to anisotropic quantum walks
(5) References

Resolvents and smooth operators

- U, unitary operator in a Hilbert space \mathcal{H} with spectral measure $E^{U}(\cdot)$, singular subspace $\mathcal{H}_{\mathrm{s}}(U)$, a.c. subspace $\mathcal{H}_{\mathrm{ac}}(U)$, projection on a.c. subspace $P_{\mathrm{ac}}(U)$, resolvent

$$
R(z):=\left(1-z U^{*}\right)^{-1}, \quad z \in \mathbb{C} \backslash \mathbb{S}^{1}
$$

and (Poisson) operator

$$
\delta(r, \theta):=\frac{1}{2 \pi}\left(1-r^{2}\right)\left|R\left(r \mathrm{e}^{i \theta}\right)\right|^{2}, \quad r \in(0, \infty) \backslash\{1\}, \theta \in[0,2 \pi)
$$

- U_{0}, unitary operator in a Hilbert space \mathcal{H}_{0} with ...
- $J \in \mathscr{B}\left(\mathcal{H}_{0}, \mathcal{H}\right)$, identification operator from \mathcal{H}_{0} to \mathcal{H}
- $V:=J U_{0}-U J$, two-Hilbert spaces perturbation

The resolvent of U can be written as a geometric series

$$
R(z)= \begin{cases}\sum_{n \geq 0}\left(z U^{*}\right)^{n} & \text { if }|z|<1 \\ -\sum_{n \geq 1}\left(z^{-1} U\right)^{n} & \text { if }|z|>1\end{cases}
$$

and one has the identity $R\left(\bar{z}^{-1}\right)^{*}=-z U^{*} R(z)$ relating values inside/outside \mathbb{S}^{1} :

If \mathcal{G} is a Hilbert space, then $T \in \mathscr{B}(\mathcal{H}, \mathcal{G})$ is locally U-smooth on a Borel set $\Theta \subset[0,2 \pi)$ if there is $c_{\Theta} \geq 0$ such that

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}}\left\|T U^{n} E^{U}(\Theta) \varphi\right\|_{\mathcal{G}}^{2} \leq c_{\Theta}\|\varphi\|_{\mathcal{H}}^{2} \quad \text { for all } \varphi \in \mathcal{H} \tag{A}
\end{equation*}
$$

and T is U-smooth if (A) is satisfied with $\Theta=[0,2 \pi)$. Similarly, T is weakly locally U-smooth on Θ if the weak limit

$$
\begin{equation*}
\underset{\varepsilon \searrow 0}{\mathrm{w}-\lim _{\mathrm{\Sigma}}} T \delta(1-\varepsilon, \theta) E^{U}(\Theta) T^{*} \text { exists for a.e. } \theta \in[0,2 \pi) \tag{B}
\end{equation*}
$$

and T is weakly U-smooth if (B) is satisfied with $\Theta=[0,2 \pi)$.

- T locally U-smooth on $\Theta \Rightarrow T$ weakly locally U-smooth on Θ.
- T locally U-smooth on $\Theta \Rightarrow \overline{E^{U}(\Theta) T^{*} \mathcal{G}^{*}} \subset \mathcal{H}_{\mathrm{ac}}(U)$.

Representation formulas for the wave operators

Set

$$
g_{ \pm}(\varepsilon):=\frac{1}{2 \pi}\left(1-(1-\varepsilon)^{ \pm 2}\right), \quad \varepsilon \in(0,1)
$$

and define $w_{ \pm}\left(U, U_{0}, J, \varepsilon\right) \in \mathscr{B}\left(\mathcal{H}_{0}, \mathcal{H}\right)$ by the sesquilinear form

$$
\begin{aligned}
& \left\langle w_{ \pm}\left(U, U_{0}, J, \varepsilon\right) \varphi_{0}, \varphi\right\rangle_{\mathcal{H}} \\
& := \pm g_{ \pm}(\varepsilon) \int_{0}^{2 \pi} \mathrm{~d} \theta\left\langle J R_{0}\left((1-\varepsilon)^{ \pm 1} \mathrm{e}^{i \theta}\right) \varphi_{0}, R\left((1-\varepsilon)^{ \pm 1} \mathrm{e}^{i \theta}\right) \varphi\right\rangle_{\mathcal{H}}
\end{aligned}
$$

for $\varphi_{0} \in \mathcal{H}_{0}$ and $\varphi \in \mathcal{H}$.

Lemma

Let $\mathscr{D}_{0} \subset \mathcal{H}_{0}$ and $\mathscr{D} \subset \mathcal{H}$ be dense sets, and assume that for each $\varphi_{0} \in \mathscr{D}_{0}$ and $\varphi \in \mathscr{D}$ the limits

$$
a_{ \pm}\left(\varphi_{0}, \varphi, \theta\right):= \pm \lim _{\varepsilon \backslash 0} g_{ \pm}(\varepsilon)\left\langle J R_{0}\left((1-\varepsilon)^{ \pm 1} \mathrm{e}^{i \theta}\right) \varphi_{0}, R\left((1-\varepsilon)^{ \pm 1} \mathrm{e}^{i \theta}\right) \varphi\right\rangle_{\mathcal{H}}
$$

exist for a.e. $\theta \in[0,2 \pi)$. Then, the following weak limits exist

$$
w_{ \pm}\left(U, U_{0}, J\right):=\underset{\varepsilon \searrow 0}{w-\lim _{0}} w_{ \pm}\left(U, U_{0}, J, \varepsilon\right) P_{\mathrm{ac}}\left(U_{0}\right)
$$

Idea of the proof.

Apply a generalisation of Lebesgue's dominated convergence theorem (Vitali's theorem) to exchange limit and integral.

The weak limits $w_{ \pm}\left(U, U_{0}, J\right)$ are the stationary wave operators for the triple $\left(U, U_{0}, J\right)$. When they exist, they posses the usual properties of wave operators

$$
\mathcal{H}_{\mathrm{s}}\left(U_{0}\right) \subset \operatorname{ker} w_{ \pm}\left(U, U_{0}, J\right) \quad \text { and } \quad \operatorname{Ran} w_{ \pm}\left(U, U_{0}, J\right) \subset \mathcal{H}_{\mathrm{ac}}(U)
$$

and the intertwinning relation ${ }^{1}$

$$
w_{ \pm}\left(U, U_{0}, J\right) E^{U_{0}}(\Theta)=E^{U}(\Theta) w_{ \pm}\left(U, U_{0}, J\right), \quad \Theta \subset[0,2 \pi) \text { Borel set. }
$$

[^0]Assume there exist a Hilbert space \mathcal{G} and operators $G_{0} \in \mathscr{B}\left(\mathcal{H}_{0}, \mathcal{G}\right)$, $G \in \mathscr{B}(\mathcal{H}, \mathcal{G})$ such that $V=G^{*} G_{0}$.

Theorem (Stationary wave operators)

Assume that for each φ_{0} in a dense set $\mathscr{D}_{0} \subset \mathcal{H}_{0}$

$$
\underset{\varepsilon \searrow 0}{\mathrm{~s}-\lim _{0}} G_{0} U_{0}^{*} R_{0}\left((1-\varepsilon)^{ \pm 1} \mathrm{e}^{i \theta}\right) \varphi_{0} \text { exist for a.e. } \theta \in[0,2 \pi) \text {, }
$$

and suppose that G is weakly U-smooth. Then, the stationary wave operators $w_{ \pm}\left(U, U_{0}, J\right)$ exist and satisfy the representation formulas

$$
\left\langle w_{ \pm}\left(U, U_{0}, J\right) \varphi_{0}, \varphi\right\rangle_{\mathcal{H}}=\int_{0}^{2 \pi} \mathrm{~d} \theta a_{ \pm}\left(\varphi_{0}, \varphi, \theta\right), \quad \varphi_{0} \in \mathscr{D}_{0}, \varphi \in \mathcal{H}
$$

Idea of the proof.

Use the assumptions on G_{0} and G to show that $a_{ \pm}\left(\varphi_{0}, \varphi, \theta\right)$ exist for a.e. $\theta \in[0,2 \pi)$, and apply the previous lemma.

Theorem (Strong wave operators)

Assume that for each φ_{0} in a dense set $\mathscr{D}_{0} \subset \mathcal{H}_{0}$

$$
\underset{\varepsilon \searrow 0}{\mathrm{~s}-\lim _{0}} G_{0} U_{0}^{*} R_{0}\left((1-\varepsilon)^{ \pm 1} \mathrm{e}^{i \theta}\right) \varphi_{0} \text { exist for a.e. } \theta \in[0,2 \pi) \text {, }
$$

and that $B_{ \pm}(\theta):=\mathrm{w}-\lim _{\varepsilon \searrow 0} G R\left((1-\varepsilon)^{ \pm 1} \mathrm{e}^{i \theta}\right) G^{*}$ exist for a.e. $\theta \in[0,2 \pi)$. Then, the strong wave operators

$$
W_{ \pm}\left(U, U_{0}, J\right):=\operatorname{s-lim}_{n \rightarrow \pm \infty} U^{n} J U_{0}^{-n} P_{\mathrm{ac}}\left(U_{0}\right)
$$

exist and coincide with the stationary wave operators $w_{ \pm}\left(U, U_{0}, J\right)$.

Idea of the proof.

The assumptions on G_{0} and G guarantee the existence of the operators $W_{ \pm}\left(U, U_{0}, J\right)$ and $w_{ \pm}\left(U, U_{0}, J\right)$.

To show that they coincide, one has to use power series for the resolvents in $w_{ \pm}\left(U, U_{0}, J\right)$ to obtain an infinite series involving powers U^{n} and U_{0}^{-n}, and then use a Tauberian theorem to prove that this series converges to

$$
\underset{n \rightarrow \pm \infty}{\mathrm{s}-\lim _{n}} U^{n} J U_{0}^{-n} P_{\mathrm{ac}}\left(U_{0}\right)=W_{ \pm}\left(U, U_{0}, J\right)
$$

Example (Trace class perturbation)

The assumptions of the theorem are satisfied for the set $\mathscr{D}_{0}=\mathcal{H}_{0}$ when V is trace class, or equivalently when the operators G_{0} and G are Hilbert-Schmidt.

Representation formulas for the scattering matrix

If the strong wave operators $W_{ \pm}\left(U, U_{0}, J\right)$ exist, then the scattering operator is defined as

$$
S\left(U, U_{0}, J\right):=W_{+}\left(U, U_{0}, J\right)^{*} W_{-}\left(U, U_{0}, J\right)
$$

Basic properties:

- $S\left(U, U_{0}, J\right) \upharpoonright \mathcal{H}_{s}\left(U_{0}\right)=0$,
- $\operatorname{Ran} S\left(U, U_{0}, J\right) \subset \mathcal{H}_{\mathrm{ac}}\left(U_{0}\right)$,
- If $W_{ \pm}\left(U, U_{0}, J\right) \upharpoonright \mathcal{H}_{\mathrm{ac}}\left(U_{0}\right)$ are isometric, then $S\left(U, U_{0}, J\right) \upharpoonright \mathcal{H}_{\mathrm{ac}}\left(U_{0}\right)$ is unitary if and only if $\operatorname{Ran} W_{-}\left(U, U_{0}, J\right)=\operatorname{Ran} W_{+}\left(U, U_{0}, J\right)$.

Let $\widehat{\sigma}_{0}$ be a core of the spectrum of U_{0}. Then, there exist for a.e. $\theta \in \widehat{\sigma}_{0}$ Hilbert spaces $\mathfrak{h}_{0}(\theta)$ and an operator

$$
F_{0}: \mathcal{H}_{0} \rightarrow \int_{\widehat{\sigma}_{0}}^{\oplus} \mathrm{d} \theta \mathfrak{h}_{0}(\theta) \quad \text { (spectral transformation) }
$$

which is unitary from $\mathcal{H}_{\mathrm{ac}}\left(U_{0}\right)$ to $\int_{\widehat{\sigma}_{0}}^{\oplus} \mathrm{d} \theta \mathfrak{h}_{0}(\theta)$, vanishes on $\mathcal{H}_{\mathrm{s}}\left(U_{0}\right)$, and diagonalises $U_{0} \upharpoonright \mathcal{H}_{\mathrm{ac}}\left(U_{0}\right)$. Namely, if

$$
U_{0}^{(\mathrm{ac})}:=U_{0} \upharpoonright \mathcal{H}_{\mathrm{ac}}\left(U_{0}\right) \quad \text { and } \quad F_{0}^{(\mathrm{ac})}:=F_{0} \upharpoonright \mathcal{H}_{\mathrm{ac}}\left(U_{0}\right)
$$

then we have the direct integral decomposition

$$
F_{0}^{(\mathrm{ac})} U_{0}^{(\mathrm{ac})}\left(F_{0}^{(\mathrm{ac})}\right)^{*}=\int_{\widehat{\sigma}_{0}}^{\oplus} \mathrm{d} \theta \mathrm{e}^{i \theta}
$$

$\mathcal{H}_{\mathrm{ac}}\left(U_{0}\right)$ is a reducing subspace for $S\left(U, U_{0}, J\right)$ and the restriction

$$
S^{(\mathrm{ac})}\left(U, U_{0}, J\right):=S\left(U, U_{0}, J\right) \upharpoonright \mathcal{H}_{\mathrm{ac}}\left(U_{0}\right)
$$

commutes with $U_{0}^{(\mathrm{ac})}$. Thus $S^{(\mathrm{ac})}\left(U, U_{0}, J\right)$ decomposes in $\int_{\widehat{\sigma}_{0}}^{\oplus} \mathrm{d} \theta \mathfrak{h}_{0}(\theta)$, that is, there exist for a.e. $\theta \in \widehat{\sigma}_{0}$ operators $S(\theta) \in \mathscr{B}\left(\mathfrak{h}_{0}(\theta)\right)$ such that

$$
F_{0}^{(\mathrm{ac})} S^{(\mathrm{ac})}\left(U, U_{0}, J\right)\left(F_{0}^{(\mathrm{ac})}\right)^{*}=\int_{\widehat{\sigma}_{0}}^{\oplus} \mathrm{d} \theta S(\theta)
$$

The family $\{S(\theta)\}_{\theta \in \widehat{\sigma}_{0}}$ is called the scattering matrix for the triple $\left(U, U_{0}, J\right)$.

Similarly, if the stationary wave operators $w_{ \pm}\left(U_{0}, U_{0}, J^{*} J\right)$ exist, then $\mathcal{H}_{\mathrm{ac}}\left(U_{0}\right)$ is a reducing subspace for $w_{ \pm}\left(U_{0}, U_{0}, J^{*} J\right)$, and

$$
w_{ \pm}^{(\mathrm{ac})}\left(U_{0}, U_{0}, J^{*} J\right):=w_{ \pm}\left(U_{0}, U_{0}, J^{*} J\right) \upharpoonright \mathcal{H}_{\mathrm{ac}}\left(U_{0}\right)
$$

commutes with $U_{0}^{(\text {ac })}$. Thus, there exist for a.e. $\theta \in \widehat{\sigma}_{0}$ operators $u_{ \pm}(\theta) \in \mathscr{B}\left(\mathfrak{h}_{0}(\theta)\right)$ such that

$$
F_{0}^{(\mathrm{ac})} w_{ \pm}^{(\mathrm{ac})}\left(U_{0}, U_{0}, J^{*} J\right)\left(F_{0}^{(\mathrm{ac})}\right)^{*}=\int_{\widehat{\sigma}_{0}}^{\oplus} \mathrm{d} \theta u_{ \pm}(\theta)
$$

Example (One-Hilbert space case)

If $\mathcal{H}_{0}=\mathcal{H}$ and $J=1_{\mathcal{H}_{0}}$, then one has

$$
w_{ \pm}\left(U_{0}, U_{0}, J^{*} J\right)=w_{ \pm}\left(U_{0}, U_{0}, 1_{\mathcal{H}_{0}}\right)=1_{\mathcal{H}_{0}}
$$

and $u_{ \pm}(\theta)=1_{\mathfrak{h}_{0}(\theta)}$ for a.e. $\theta \in \widehat{\sigma}_{0}$.

Theorem (Scattering matrix)

Assume that for each φ_{0} in a dense set $\mathscr{D}_{0} \subset \mathcal{H}_{0}$

$$
\underset{\varepsilon \searrow 0}{\mathrm{~s}-\lim _{0}} G_{0} U_{0}^{*} R_{0}\left((1-\varepsilon)^{ \pm 1} \mathrm{e}^{i \theta}\right) \varphi_{0} \text { exist for a.e. } \theta \in[0,2 \pi) \text {, }
$$

that $B_{ \pm}(\theta)=\mathrm{w}-\lim _{\varepsilon \searrow 0} G R\left((1-\varepsilon)^{ \pm 1} \mathrm{e}^{i \theta}\right) G^{*}$ exist for a.e. $\theta \in[0,2 \pi)$, and that G_{0} is weakly U_{0}-smooth. Then, we have for a.e. $\theta \in \widehat{\sigma}_{0}$ the representation formulas for the scattering matrix:

$$
\begin{aligned}
& S(\theta)=u_{+}(\theta)+2 \pi\left(Z_{0}\left(\theta, G J U_{0}\right) Z_{0}\left(\theta, G_{0}\right)^{*}-Z_{0}\left(\theta, G_{0}\right) B_{+}(\theta) Z_{0}\left(\theta, G_{0}\right)^{*}\right), \\
& S(\theta)=u_{-}(\theta)-2 \pi\left(Z_{0}\left(\theta, G_{0}\right) Z_{0}\left(\theta, G J U_{0}\right)^{*}-Z_{0}\left(\theta, G_{0}\right) B_{-}(\theta) Z_{0}\left(\theta, G_{0}\right)^{*}\right),
\end{aligned}
$$

with

$$
Z_{0}\left(\theta, T_{0}\right) \zeta=\left(F_{0} T_{0}^{*} \zeta\right)(\theta), \quad T_{0} \in \mathscr{B}\left(\mathcal{H}_{0}, \mathcal{G}\right), \zeta \in \mathcal{G}, \text { a.e. } \theta \in \widehat{\sigma}_{0}
$$

Idea of the proof.

Apply the results that precede + some integrals calculations.

Application to anisotropic quantum walks

In the Hilbert space

$$
\mathcal{H}:=\ell^{2}\left(\mathbb{Z}, \mathbb{C}^{2}\right)=\left\{\Psi: \mathbb{Z} \rightarrow \mathbb{C}^{2} \mid \sum_{x \in \mathbb{Z}}\|\Psi(x)\|_{\mathbb{C}^{2}}^{2}<\infty\right\}
$$

the evolution operator of the quantum walk is $U:=S C$ with

$$
\begin{aligned}
& (S \Psi)(x):=\binom{\Psi^{(0)}(x+1)}{\Psi^{(1)}(x-1)}, \quad \Psi=\binom{\Psi^{(0)}}{\Psi^{(1)}} \in \mathcal{H}, x \in \mathbb{Z}, \quad \text { (shift) } \\
& (C \Psi)(x):=C(x) \Psi(x), \quad \Psi \in \mathcal{H}, x \in \mathbb{Z}, \quad C(x) \in U(2)
\end{aligned}
$$

The operator U is unitary because S and C are unitary.
C is short-range and anisotropic at infinity:

Assumption (Anisotropic coin)

There exist $C_{\ell}, C_{r} \in U(2), \kappa_{\ell}, \kappa_{r}>0$, and $\varepsilon_{\ell}, \varepsilon_{r}>0$ such that

$$
\begin{array}{ll}
\left\|C(x)-C_{\ell}\right\|_{\mathscr{B}\left(\mathbb{C}^{2}\right)} \leq \kappa_{\ell}|x|^{-1-\varepsilon_{\ell}} & \text { if } x<0 \\
\left\|C(x)-C_{r}\right\|_{\mathscr{B}\left(\mathbb{C}^{2}\right)} \leq \kappa_{r}|x|^{-1-\varepsilon_{r}} & \text { if } x>0
\end{array}
$$

with indexes ℓ for "left" and r for "right".

Quantum walks satisfying this are called quantum walks with an anisotropic coin.

The assumption provides operators $U_{\star}:=S C_{\star}(\star=\ell, r)$ describing the asymptotic behaviour of U on the left and on the right.

It also suggests to define the free evolution operator as

$$
U_{0}:=U_{\ell} \oplus U_{\mathrm{r}} \quad \text { in } \quad \mathcal{H}_{0}:=\mathcal{H} \oplus \mathcal{H},
$$

and to define the identification operator $J: \mathcal{H}_{0} \rightarrow \mathcal{H}$ as

$$
J\left(\Psi_{0}\right):=j_{\ell} \Psi_{0, \ell}+j_{r} \Psi_{0, r}, \quad \Psi_{0}=\left(\Psi_{0, \ell}, \Psi_{0, r}\right) \in \mathcal{H}_{0}
$$

with

$$
j_{\mathrm{r}}(x):=\left\{\begin{array}{ll}
1 & \text { if } x \geq 0 \\
0 & \text { if } x \leq-1
\end{array} \quad \text { and } \quad j_{\ell}:=1-j_{\mathrm{r}} .\right.
$$

If the matrices C_{\star} are not anti-diagonal, then U_{0} has purely a.c. spectrum and the strong wave operators $W_{ \pm}\left(U, U_{0}, J\right)$ exist and are complete [Richard-Suzuki-T. 2018-2019].

Furthermore, the assumption implies that V is trace class. Thus one can verify the validity of the representation formulas for the stationary wave operators and the scattering matrix.

Thank you

References

- T. Kato and S.T. Kuroda. Theory of simple scattering and eigenfunction expansions. In: Proc. Conf. for M. Stone, 1970
- S. Richard, A. Suzuki, and R. Tiedra de Aldecoa. Quantum walks with an anisotropic coin I: spectral theory. Lett. Math. Phys., 2018
- S. Richard, A. Suzuki, and R. Tiedra de Aldecoa. Quantum walks with an anisotropic coin II: scattering theory. Lett. Math. Phys., 2019
- R. Tiedra de Aldecoa. Stationary scattering theory for unitary operators with an application to quantum walks. J. Funct. Anal., 2020
- D.R. Yafaev. Mathematical Scattering Theory. Translations of Mathematical Monographs, vol. 105, 1992

[^0]: ${ }^{1}$ Similar to the self-adjoint case [Yafaev 1992].

