Spectral and scattering properties of quantum walks on homogenous trees of odd degree

Rafael Tiedra de Aldecoa
Pontifical Catholic University of Chile

Prague, December 2021

Table of Contents

(1) Mourre theory in one Hilbert space
(2) Quantum walks on homogeneous trees of odd degree $d \geq 3$

- Free evolution operator
(3) Mourre theory in two Hilbert spaces

4. Quantum walks on homogeneous trees of odd degree $d \geq 3$

- Full evolution operator
- Wave operators
(5) Open problems
(6) References

Mourre theory in one Hilbert space

- \mathcal{H}, Hilbert space with norm $\|\cdot\|$ and scalar product $\langle\cdot, \cdot\rangle$
- $\mathscr{B}(\mathcal{H})$, set of bounded linear operators on \mathcal{H}
- $\mathscr{K}(\mathcal{H})$, set of compact operators on \mathcal{H}
- U, unitary operator in \mathcal{H} with spectral measure $E^{U}(\cdot)$, spectrum

$$
\sigma(U) \subset \mathbb{S}^{1}:=\left\{\mathrm{e}^{i t} \mid t \in[0,2 \pi)\right\}
$$

and subspace of absolute continuity $\mathcal{H}_{\mathrm{ac}}(U)$

- A, self-adjoint operator in \mathcal{H} with domain $\mathcal{D}(A)$

Definition

$U \in C^{k}(A)$ if the map

$$
\mathbb{R} \ni t \mapsto \mathrm{e}^{-i t A} U \mathrm{e}^{i t A} \in \mathscr{B}(\mathcal{H})
$$

is strongly of class C^{k}.
Intuitively, if $U \in C^{k}(A)$, then the k-th commutator

$$
[\cdots[[U, \underbrace{A], A], \ldots, A]}_{k \text { times }}
$$

is a well-defined bounded operator.

Definition

$U \in C^{1+\varepsilon}(A)$ for some $\varepsilon \in(0,1)$ if $U \in C^{1}(A)$ and

$$
\left\|\mathrm{e}^{-i t A}[U, A] \mathrm{e}^{i t A}-[U, A]\right\|_{\mathscr{B}(\mathcal{H})} \leq \text { Const. } t^{\varepsilon} \quad \text { for all } t \in(0,1) .
$$

One has the inclusions:

$$
C^{2}(A) \subset C^{1+\varepsilon}(A) \subset C^{1}(A) \subset C^{0}(A)=\mathscr{B}(\mathcal{H})
$$

Theorem (Fernández-Richard-T. 2013)

Let $U \in C^{1+\varepsilon}(A)$ and suppose there exist an open set $\Theta \subset \mathbb{S}^{1}$, $a>0$ and $K \in \mathscr{K}(\mathcal{H})$ such that

$$
E^{U}(\Theta) U^{-1}[A, U] E^{U}(\Theta) \geq a E^{U}(\Theta)+K
$$

Then U has at most finitely many eigenvalues in Θ, each one of finite multiplicity, and no singular continuous spectrum in Θ.

- The inequality (\star) is called a Moire estimate for U on Θ.
- The operator A is called a conjugate operator for U on Θ.
- If $K=0$, then U has purely a.c. spectrum in $\Theta \cap \sigma(U)$.

Quantum walks on homogeneous trees of odd degree $d \geq 3$

Classical random walk (a) and quantum walk (b) (from nature.com)

Homogeneous tree \mathcal{T} of degree $d=3$

Even/odd elements of \mathcal{T} defined with the word length $|\cdot|$:

$$
\mathcal{T}_{\mathrm{e}}:=\{x \in \mathcal{T}| | x \mid \in 2 \mathbb{N}\} \quad \text { and } \quad \mathcal{T}_{0}:=\{x \in \mathcal{T}| | x \mid \in 2 \mathbb{N}+1\}
$$

with characteristic functions $\chi_{\mathcal{T}_{e}}$ and $\chi_{\mathcal{T}_{0}}$.
In $\mathcal{H}:=\ell^{2}\left(\mathcal{T}, \mathbb{C}^{d}\right)$ the evolution operator is $U:=S C$ with 1

$$
\begin{gathered}
S:=\left(\begin{array}{ccc}
S_{1+1,1+2} & & 0 \\
& \ddots & \\
0 & & S_{d+1, d+2}
\end{array}\right), \quad S_{d, d+1}:=S_{d, 1}, S_{d+1, d+2}:=S_{1,2}, \\
S_{i j} f:=\chi_{\mathcal{T}_{\mathrm{e}}} f\left(\cdot a_{i}\right)+\chi \mathcal{T}_{0} f\left(\cdot a_{j}\right), \quad f \in \ell^{2}(\mathcal{T}) \quad \text { (shift), } \\
(C \varphi)(x):=C(x) \varphi(x), \quad \varphi \in \mathcal{H}, x \in \mathcal{T}, C(x) \in \mathrm{U}(d) \quad \text { (coin). }
\end{gathered}
$$

${ }^{1}$ Definitions of [Hamza-Joye 2014] and [Joye-Marin 2014].

Support of the iterates $S_{12}^{n} \delta_{a_{3}}(d=3, n \in \mathbb{Z})$
C is anisotropic; it converges to an asymptotic coin on each branch of \mathcal{T} :

Assumption (Short-range)

For $i=1, \ldots, d$, there is a diagonal matrix $C_{i} \in U(d)$ and $\varepsilon_{i}>0$ such that

$$
\left\|C(x)-C_{i}\right\|_{\mathscr{B}\left(\mathbb{C}^{d}\right)} \leq \text { Const. }\left(1+|x|^{2}\right)^{-\left(1+\varepsilon_{i}\right) / 2} \quad \text { if } x \in \mathcal{T}_{i}
$$

where $\mathcal{T}_{i}:=\left\{x \in \mathcal{T} \mid\right.$ the first letter of $x \in \mathcal{T}$ is $\left.a_{i}\right\}$.

Free evolution operator

$\rightsquigarrow U_{i}:=S C_{i}$ describes the asymptotic behaviour of U on \mathcal{T}_{i}
The assumption also suggests to define the free evolution operator as

$$
U_{0}:=\bigoplus_{k=1}^{d} U_{k} \quad \text { in } \quad \mathcal{H}_{0}:=\bigoplus_{k=1}^{d} \mathcal{H}
$$

and the identification operator $J: \mathcal{H}_{0} \rightarrow \mathcal{H}$ as

$$
J \Phi:=\sum_{k=1}^{d} \chi_{k} \varphi_{k}, \quad \Phi=\left(\varphi_{1}, \ldots, \varphi_{d}\right) \in \mathcal{H}_{0}
$$

with

$$
\chi_{1}:=\chi_{\mathcal{T}_{1} \cup\{e\}}, \quad \chi_{k}:=\chi_{\mathcal{T}_{k}}(k \geq 2)
$$

For $i \neq j$, define the modified word length

$$
|\cdot|_{i, j}: \mathcal{T} \rightarrow \mathbb{N}, \quad x \mapsto|x|_{i, j}:=\left|x_{i, j}^{-1} x\right|,
$$

with $x_{i, j}$ the longest word in the reduced representation of x, starting from the left and ending with a letter different from a_{i} or a_{j}.

Example

If $x=a_{1} a_{2} a_{3} a_{2}$, then $x_{1,2}=a_{1} a_{2} a_{3}$, and if $x=a_{1} a_{2} a_{1} a_{2}$, then $x_{1,2}=e$.

Lemma (Conjugate operator for $S_{i j}$)

Take $i \neq j$. Then the operator

$$
A_{i, j} f:=S_{i, j}^{-1}\left[|\cdot|_{i, j}^{2}, S_{i, j}\right] f, \quad f \in C_{c}(\mathcal{T})
$$

is essentially self-adjoint in $\ell^{2}(\mathcal{T})$, with closure also denoted by $A_{i j}$, and $S_{i j} \in C^{\infty}\left(A_{i j}\right)$ with

$$
S_{i j}^{-1}\left[A_{i j}, S_{i j}\right]=2 \quad\left(\text { Mourre estimate for } S_{i j} \text { on } \Theta=\mathbb{S}^{1}\right)
$$

Idea of the proof.

Direct calculations on the dense set $C_{c}(\mathcal{T}) .{ }^{a}$
${ }^{a}$ Reminiscent of the relations

$$
A:=S^{-1}\left[X^{2}, S\right] \quad \text { and } \quad S^{-1}[A, S]=2
$$

with S the bilateral shift on $\ell^{2}(\mathbb{Z})$ and X the position operator on $\ell^{2}(\mathbb{Z})$.
[Fernández-Richard-T. 2013] implies that $S_{i j}$ has purely a.c. spectrum. But more can be said:

The relation $S_{i j}^{-1}\left[A_{i j}, S_{i j}\right]=2$ implies by functional calculus the imprimitivity relation

$$
\mathrm{e}^{i s A_{i j}} \gamma\left(S_{i j}\right) \mathrm{e}^{-i s A_{i j}}=\gamma\left(\mathrm{e}^{2 i s} S_{i j}\right), \quad s \in \mathbb{R}, \gamma \in C\left(\mathbb{S}^{1}\right)
$$

This and Mackey's imprimitivity theorem implies that $S_{i j}$ is unitarily equivalent to a multiplication operator with purely a.c. spectrum which covers \mathbb{S}^{1}.
(think of a version of Stone-von Neumann theorem on $\mathbb{S}^{1} \ldots$)

What precedes + direct sums + diagonality of the C_{i} 's implies:

Proposition (Spectral properties of U_{0})

Let

$$
A_{0}:=\bigoplus_{k=1}^{d} \widetilde{A} \quad \text { with } \quad \tilde{A}:=\left(\begin{array}{cccc}
A_{1+1,1+2} & & & \\
& A_{2+1,2+2} & & 0 \\
0 & & \ddots & \\
& & & A_{d+1, d+2}
\end{array}\right)
$$

(a) A_{0} is essentially self-adjoint in \mathcal{H}_{0}, with closure also denoted by A_{0}.
(b) $U_{0} \in C^{\infty}\left(A_{0}\right)$ with $U_{0}^{-1}\left[A_{0}, U_{0}\right]=2$, and U_{0} satisfies the imprimitivity relation

$$
\mathrm{e}^{i s A_{0}} \gamma\left(U_{0}\right) \mathrm{e}^{-i s A_{0}}=\gamma\left(\mathrm{e}^{2 i s} U_{0}\right), \quad s \in \mathbb{R}, \gamma \in C\left(\mathbb{S}^{1}\right)
$$

(c) U_{0} is unitarily equivalent to a multiplication operator with purely a.c. spectrum covering the whole unit circle \mathbb{S}^{1}.

Mourre theory in two Hilbert spaces

Using [Richard-Suzuki-T. 2018], we get the general perturbation result:

Theorem

Let U_{0}, U be unitary operators in $\mathcal{H}_{0}, \mathcal{H}$, let A_{0} be self-adjoint in \mathcal{H}_{0}, let $J \in \mathscr{B}\left(\mathcal{H}_{0}, \mathcal{H}\right)$, and assume
(i) there is a $\mathscr{D} \subset \mathcal{D}\left(A_{0} J^{*}\right) \subset \mathcal{H}$ such that $J A_{0} J^{*} \upharpoonright \mathscr{D}$ is essentially self-adjoint, with closure denoted by A,
(ii) $U_{0} \in C^{1}\left(A_{0}\right)$,
(iii) compacity conditions relating U_{0}, U, A_{0}, J.

Then $U \in C^{1}(A)$, and A is a conjugate operator for U on $\Theta \subset \mathbb{S}^{1}$ if A_{0} is a conjugate operator for U_{0} on Θ.

Full evolution operator

Using the short-range assumption, we get that $V:=J U_{0}-U J$ is trace class, that $U \in C^{1+\varepsilon}(A)$, and the hypotheses of the last theorem. Thus:

Theorem (Spectral properties of U)

U has at most finitely many eigenvalues, each one of finite multiplicity, and no singular continuous spectrum.
(first spectral result for quantum walks on trees with position-dependent coin)

Wave operators

Theorem (Completeness, version 1)

The wave operators $W_{ \pm}\left(U, U_{0}, J\right): \mathcal{H}_{0} \rightarrow \mathcal{H}$ given by

$$
W_{ \pm}\left(U, U_{0}, J\right):=\underset{n \rightarrow \pm \infty}{s-\lim _{n}} U^{-n} J U_{0}^{n}
$$

exist and are complete, that is, $\operatorname{Ran}\left(W_{ \pm}\left(U, U_{0}, J\right)\right)=\mathcal{H}_{\mathrm{ac}}(U)$.

Idea of the proof.

$W_{ \pm}\left(U, U_{0}, J\right)$ exist because V is trace class. For the completeness, the idea is to note that $\mathcal{H}_{\mathrm{ac}}(U) \supset \operatorname{Ran}\left(W_{ \pm}\left(U, U_{0}, J\right)\right) \supset \operatorname{Ran}\left(a_{ \pm}\right)$with

$$
a_{ \pm} \varphi:=W_{ \pm}\left(U, U_{0}, J\right)(\varphi, \ldots, \varphi), \quad \varphi \in \mathcal{H}
$$

and show that $\operatorname{Ran}\left(a_{ \pm}\right)=\mathcal{H}_{\mathrm{ac}}(U)$.

A direct calculation shows that $a_{ \pm}=\underset{n \rightarrow \pm \infty}{s-\lim _{n}} U^{-n}\left(\sum_{k=1}^{d} \chi_{k} C_{k}\right)^{n} S^{n}$. Thus:

Corollary (Completeness, version 2)

The operators $a_{ \pm}: \mathcal{H} \rightarrow \mathcal{H}$ given by

$$
a_{ \pm}:=\underset{n \rightarrow \pm \infty}{s-\lim _{n}} U^{-n} J_{n} S^{n}, \quad J_{n}:=\left(\sum_{k=1}^{d} \chi_{k} C_{k}\right)^{n}
$$

exist, are isometric, and satisfy $\operatorname{Ran}\left(a_{ \pm}\right)=\mathcal{H}_{\mathrm{ac}}(U)$.
In other words: If one uses $\left(\sum_{k=1}^{d} \chi_{k} C_{k}\right)^{n}$ as time-dependent identification operators, then the "trivial" shift S can be used as a free evolution operator.

Corollary

One has $\sigma_{\mathrm{ac}}(U)=\mathbb{S}^{1}$.

Idea of the proof.

Follows from the fact that $a_{ \pm}$is unitary from $\mathcal{H}=\mathcal{H}_{\mathrm{ac}}(S)$ to $\mathcal{H}_{\mathrm{ac}}(U)$.
Thus, the spectrum of U covers \mathbb{S}^{1} and is purely a.c., outside a finite set where U may have eigenvalues of finite multiplicity.

Finally:

Theorem (Completeness, version 3)

The wave operators $W_{ \pm}\left(U, \widetilde{U}_{0}\right): \mathcal{H} \rightarrow \mathcal{H}$ given by

$$
W_{ \pm}\left(U, \widetilde{U}_{0}\right):=\underset{n \rightarrow \pm \infty}{s-\lim _{n}} U^{-n}\left(\widetilde{U}_{0}\right)^{n}, \quad \widetilde{U}_{0}:=S \sum_{k=1}^{d} \chi_{k} C_{k}
$$

exist, are isometric, and are complete, that is, $\operatorname{Ran}\left(W_{ \pm}\left(U, \widetilde{U}_{0}\right)\right)=\mathcal{H}_{\mathrm{ac}}(U)$.

Idea of the proof.

Follows from the facts that $\sum_{k=1}^{d} \chi_{k} C_{k}$ is diagonal (but not constant) and $\widetilde{U}_{0}-U$ trace class.

Open problems

1. What are the initial subspaces of $W_{ \pm}\left(U, U_{0}, J\right)$?
2. What are the asymptotic velocity operators of $U_{i}=S C_{i}$?
3. The case of coin operators that converge at infinity along other partitions of the tree into subtrees ?
4. The case of coin operators that converge at infinity to arbitrary constant unitary matrices? Helgason-Fourier transform ?
5. The case of trees of even degree ?
6. The case of rooted trees ?

Thank you

References

- C. Fernández, S. Richard, and R. Tiedra de Aldecoa. Commutator methods for unitary operators. J. Spectr. Theory, 2013
- E. Hamza and A. Joye. Spectral transition for random quantum walks on trees. Comm. Math. Phys., 2014
- A. Joye and L. Marin. Spectral properties of quantum walks on rooted binary trees. J. Stat. Phys., 2014
- S. Richard, A. Suzuki, and R. Tiedra de Aldecoa. Quantum walks with an anisotropic coin I: spectral theory. Lett. Math. Phys., 2018
- R. Tiedra de Aldecoa. Spectral and scattering properties of quantum walks on homogenous trees of odd degree. Ann. Henri Poincaré, 2021

