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Mourre theory in one Hilbert space

Mourre theory in one Hilbert space

• H, Hilbert space with norm ‖ · ‖ and scalar product 〈 · , · 〉

• B(H), set of bounded linear operators on H

• K (H), set of compact operators on H

• U, unitary operator in H with spectral measure EU( ·), spectrum

σ(U) ⊂ S1 :=
{
eit | t ∈ [0, 2π)

}
,

and subspace of absolute continuity Hac(U)

• A, self-adjoint operator in H with domain D(A)
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Mourre theory in one Hilbert space

Definition

U ∈ C k(A) if the map

R 3 t 7→ e−itA U eitA ∈ B(H)

is strongly of class C k .

Intuitively, if U ∈ C k(A), then the k-th commutator[
· · ·
[
[U,A],A

]
, . . . ,A

]︸ ︷︷ ︸
k times

is a well-defined bounded operator.

4 / 26



Mourre theory in one Hilbert space

Definition

U ∈ C 1+ε(A) for some ε ∈ (0, 1) if U ∈ C 1(A) and∥∥ e−itA[U,A] eitA−[U,A]
∥∥

B(H)
≤ Const. tε for all t ∈ (0, 1).

One has the inclusions :

C 2(A) ⊂ C 1+ε(A) ⊂ C 1(A) ⊂ C 0(A) = B(H).
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Mourre theory in one Hilbert space

Theorem (Fernández-Richard-T. 2013)

Let U ∈ C 1+ε(A) and suppose there exist an open set Θ ⊂ S1, a > 0 and
K ∈ K (H) such that

EU(Θ)U−1[A,U]EU(Θ) ≥ aEU(Θ) + K . (F)

Then U has at most finitely many eigenvalues in Θ, each one of finite
multiplicity, and no singular continuous spectrum in Θ.

• The inequality (F) is called a Mourre estimate for U on Θ.

• The operator A is called a conjugate operator for U on Θ.

• If K = 0, then U has purely a.c. spectrum in Θ ∩ σ(U).
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Quantum walks on homogeneous trees of odd degree d ≥ 3

Quantum walks on homogeneous trees of odd
degree d ≥ 3

Classical random walk (a) and quantum walk (b) (from nature.com)
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http://www.nature.com/nature/journal/v484/n7392/fig_tab/nature11035_F1.html


Quantum walks on homogeneous trees of odd degree d ≥ 3

Homogeneous tree T of degree d = 3
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Quantum walks on homogeneous trees of odd degree d ≥ 3

Even/odd elements of T defined with the word length | · | :

Te :=
{
x ∈ T | |x | ∈ 2N

}
and To :=

{
x ∈ T | |x | ∈ 2N + 1

}
with characteristic functions χTe and χTo .

In H := `2(T ,Cd) the evolution operator is U := SC with 1

S :=

 S1+1,1+2 0
. . .

0 Sd+1,d+2

 , Sd ,d+1 := Sd ,1, Sd+1,d+2 := S1,2,

Sij f := χTe f ( ·ai ) + χTo f ( ·aj), f ∈ `2(T ) (shift),

(Cϕ)(x) := C (x)ϕ(x), ϕ ∈ H, x ∈ T , C (x) ∈ U(d) (coin).

1Definitions of [Hamza-Joye 2014] and [Joye-Marin 2014].
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Quantum walks on homogeneous trees of odd degree d ≥ 3

Support of the iterates Sn
12δa3 (d = 3, n ∈ Z)
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Quantum walks on homogeneous trees of odd degree d ≥ 3

C is anisotropic; it converges to an asymptotic coin on each branch of T :

Assumption (Short-range)

For i = 1, . . . , d , there is a diagonal matrix Ci ∈ U(d) and εi > 0 such that∥∥C (x)− Ci

∥∥
B(Cd )

≤ Const.
(
1 + |x |2)−(1+εi )/2 if x ∈ Ti

where Ti :=
{
x ∈ T | the first letter of x ∈ T is ai

}
.
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Quantum walks on homogeneous trees of odd degree d ≥ 3 Free evolution operator

Free evolution operator

 Ui := SCi describes the asymptotic behaviour of U on Ti

The assumption also suggests to define the free evolution operator as

U0 :=
d⊕

k=1

Uk in H0 :=
d⊕

k=1

H,

and the identification operator J : H0 → H as

J Φ :=
d∑

k=1

χk ϕk , Φ = (ϕ1, . . . , ϕd) ∈ H0,

with
χ1 := χT1∪{e}, χk := χTk (k ≥ 2).
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Quantum walks on homogeneous trees of odd degree d ≥ 3 Free evolution operator

For i 6= j , define the modified word length

| · |i ,j : T → N, x 7→ |x |i ,j :=
∣∣x−1

i ,j x
∣∣,

with xi ,j the longest word in the reduced representation of x , starting from
the left and ending with a letter different from ai or aj .

Example

If x = a1a2a3a2, then x1,2 = a1a2a3, and if x = a1a2a1a2, then x1,2 = e.
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Quantum walks on homogeneous trees of odd degree d ≥ 3 Free evolution operator

Lemma (Conjugate operator for Sij)

Take i 6= j . Then the operator

Ai ,j f := S−1
i ,j

[
| · |2i ,j ,Si ,j

]
f , f ∈ Cc(T ),

is essentially self-adjoint in `2(T ), with closure also denoted by Aij , and
Sij ∈ C∞(Aij) with

S−1
ij [Aij ,Sij ] = 2 (Mourre estimate for Sij on Θ = S1).

Idea of the proof.

Direct calculations on the dense set Cc(T ).a

aReminiscent of the relations

A := S
−1[X2, S] and S

−1[A, S] = 2,

with S the bilateral shift on `2(Z) and X the position operator on `2(Z).
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Quantum walks on homogeneous trees of odd degree d ≥ 3 Free evolution operator

[Fernández-Richard-T. 2013] implies that Sij has purely a.c. spectrum. But
more can be said :

The relation S−1
ij [Aij , Sij ] = 2 implies by functional calculus the

imprimitivity relation

eisAij γ(Sij) e
−isAij = γ(e2is Sij), s ∈ R, γ ∈ C (S1).

This and Mackey’s imprimitivity theorem implies that Sij is unitarily
equivalent to a multiplication operator with purely a.c. spectrum which
covers S1.

(think of a version of Stone-von Neumann theorem on S1...)
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Quantum walks on homogeneous trees of odd degree d ≥ 3 Free evolution operator

What precedes + direct sums + diagonality of the Ci ’s implies :

Proposition (Spectral properties of U0)

Let

A0 :=
d⊕

k=1

Ã with Ã :=


A1+1,1+2

A2+1,2+2 0

0
. . .

Ad+1,d+2

 .

(a) A0 is essentially self-adjoint in H0, with closure also denoted by A0.

(b) U0 ∈ C∞(A0) with U−1
0 [A0,U0] = 2, and U0 satisfies the

imprimitivity relation

eisA0 γ(U0) e−isA0 = γ(e2is U0), s ∈ R, γ ∈ C (S1).

(c) U0 is unitarily equivalent to a multiplication operator with purely a.c.
spectrum covering the whole unit circle S1.

16 / 26



Mourre theory in two Hilbert spaces

Mourre theory in two Hilbert spaces

Using [Richard-Suzuki-T. 2018], we get the general perturbation result :

Theorem

Let U0,U be unitary operators in H0,H, let A0 be self-adjoint in H0, let
J ∈ B(H0,H), and assume

(i) there is a D ⊂ D(A0J
∗) ⊂ H such that JA0J

∗ � D is essentially
self-adjoint, with closure denoted by A,

(ii) U0 ∈ C 1(A0),

(iii) compacity conditions relating U0,U,A0, J.

Then U ∈ C 1(A), and A is a conjugate operator for U on Θ ⊂ S1 if A0 is
a conjugate operator for U0 on Θ.
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Quantum walks on homogeneous trees of odd degree d ≥ 3 Full evolution operator

Full evolution operator

Using the short-range assumption, we get that V := JU0 − UJ is trace
class, that U ∈ C 1+ε(A), and the hypotheses of the last theorem. Thus :

Theorem (Spectral properties of U)

U has at most finitely many eigenvalues, each one of finite multiplicity,
and no singular continuous spectrum.

(first spectral result for quantum walks on trees with position-dependent
coin)
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Quantum walks on homogeneous trees of odd degree d ≥ 3 Wave operators

Wave operators

Theorem (Completeness, version 1)

The wave operators W±(U,U0, J) : H0 → H given by

W±(U,U0, J) := s-lim
n→±∞

U−nJUn
0

exist and are complete, that is, Ran
(
W±(U,U0, J)

)
= Hac(U).

Idea of the proof.

W±(U,U0, J) exist because V is trace class. For the completeness, the
idea is to note that Hac(U) ⊃ Ran

(
W±(U,U0, J)

)
⊃ Ran(a±) with

a±ϕ := W±(U,U0, J)(ϕ, . . . , ϕ), ϕ ∈ H,

and show that Ran(a±) = Hac(U).
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Quantum walks on homogeneous trees of odd degree d ≥ 3 Wave operators
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Quantum walks on homogeneous trees of odd degree d ≥ 3 Wave operators

A direct calculation shows that a± = s-lim
n→±∞

U−n
(∑d

k=1 χkCk

)n
Sn. Thus :

Corollary (Completeness, version 2)

The operators a± : H → H given by

a± := s-lim
n→±∞

U−nJnS
n, Jn :=

(∑d
k=1 χkCk

)n
,

exist, are isometric, and satisfy Ran(a±) = Hac(U).

In other words : If one uses (
∑d

k=1 χkCk)n as time-dependent
identification operators, then the “trivial” shift S can be used as a free
evolution operator.
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Quantum walks on homogeneous trees of odd degree d ≥ 3 Wave operators

Corollary

One has σac(U) = S1.

Idea of the proof.

Follows from the fact that a± is unitary from H = Hac(S) to Hac(U).

Thus, the spectrum of U covers S1 and is purely a.c., outside a finite set
where U may have eigenvalues of finite multiplicity.
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Quantum walks on homogeneous trees of odd degree d ≥ 3 Wave operators

Finally :

Theorem (Completeness, version 3)

The wave operators W±(U, Ũ0) : H → H given by

W±(U, Ũ0) := s-lim
n→±∞

U−n(Ũ0)n, Ũ0 := S
∑d

k=1 χkCk ,

exist, are isometric, and are complete, that is, Ran(W±(U, Ũ0)) = Hac(U).

Idea of the proof.

Follows from the facts that
∑d

k=1 χkCk is diagonal (but not constant) and

Ũ0 − U trace class.
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Open problems

Open problems

1. What are the initial subspaces of W±(U,U0, J) ?

2. What are the asymptotic velocity operators of Ui = SCi ?

3. The case of coin operators that converge at infinity along other
partitions of the tree into subtrees ?

4. The case of coin operators that converge at infinity to arbitrary
constant unitary matrices ? Helgason-Fourier transform ?

5. The case of trees of even degree ?

6. The case of rooted trees ?
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Open problems

Thank you
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