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Commutators in one Hilbert space

Commutators in one Hilbert space

• H, Hilbert space with norm ‖ · ‖ and scalar product 〈 · , · 〉

• B(H), set of bounded linear operators on H

• K (H), set of compact operators on H

• U, unitary operator in H with spectral measure EU( ·) and spectrum

σ(U) ⊂ S1 :=
{
eiγ | γ ∈ [0, 2π)

}
• A, self-adjoint operator in H with domain D(A)
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Commutators in one Hilbert space

Definition

U ∈ C k(A) if the map

R 3 t 7→ e−itA U eitA ∈ B(H)

is strongly of class C k .

U ∈ C 1(A) if and only if∣∣〈ϕ,UAϕ〉 − 〈Aϕ,Uϕ〉
∣∣ ≤ Const.‖ϕ‖2 for all ϕ ∈ D(A).

The bounded operator associated to the continuous extension of the
quadratic form is written [U,A], and

[iU,A] = s-
d

dt

∣∣∣
t=0

e−itA U eitA ∈ B(H).
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Commutators in one Hilbert space

Definition

U ∈ C 1+ε(A) for some ε ∈ (0, 1) if U ∈ C 1(A) and∥∥ e−itA[U,A] eitA−[U,A]
∥∥

B(H)
≤ Const. tε for all t ∈ (0, 1).

One has the inclusions :

C 2(A) ⊂ C 1+ε(A) ⊂ C 1(A) ⊂ B(H).
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Commutators in one Hilbert space

Theorem (Fernández-Richard-T. 2013)

Let U ∈ C 1+ε(A) and suppose there exist an open set Θ ⊂ S1, a > 0 and
K ∈ K (H) such that

EU(Θ)U−1[A,U]EU(Θ) ≥ aEU(Θ) + K . (F)

Then, U has at most finitely many eigenvalues in Θ, each one of finite
multiplicity, and U has no singular continuous spectrum in Θ.

• The inequality (F) is called a Mourre estimate for U on Θ.

• The operator A is called a conjugate operator for U on Θ.

• If K = 0, then U has purely absolutely continuous spectrum in
Θ ∩ σ(U).

• In fact, one obtains a limiting absorption principle (resolvent
estimate) under the hypotheses of the theorem.
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Quantum walks with an anisotropic coin

Quantum walks with an anisotropic coin

Classical random walk (a) and quantum walk (b) (from nature.com)
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http://www.nature.com/nature/journal/v484/n7392/fig_tab/nature11035_F1.html


Quantum walks with an anisotropic coin

In the Hilbert space

H := `2(Z,C2) =

{
Ψ : Z→ C2 |

∑
x∈Z
‖Ψ(x)‖2

C2 <∞

}
,

the evolution operator of the quantum walk is

U := SC

with

(SΨ)(x) :=

(
Ψ(0)(x + 1)

Ψ(1)(x − 1)

)
, Ψ =

(
Ψ(0)

Ψ(1)

)
∈ H, x ∈ Z, (shift)

(CΨ)(x) := C (x)Ψ(x), Ψ ∈ H, x ∈ Z, C (x) ∈ U(2). (coin)

The operator U is unitary because S and C are unitary.
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Quantum walks with an anisotropic coin

C is short-range and anisotropic at infinity :

Assumption (Anisotropic coin)

There exist C`,Cr ∈ U(2), κ`, κr > 0, and ε`, εr > 0 such that∥∥C (x)− C`
∥∥

B(C2)
≤ κ` |x |−1−ε` if x < 0∥∥C (x)− Cr

∥∥
B(C2)

≤ κr |x |−1−εr if x > 0,

with indexes ` for “left” and r for “right”.

Quantum walks satisfying this are called quantum walks with an
anisotropic coin.

They include one-defect models, two-phase quantum walks, and
topological phase quantum walks as special cases.
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Asymptotic evolution operators

Asymptotic evolution operators

The assumption furnishes two unitary operators

U` := SC` and Ur := SCr

describing the asymptotic behaviour of U on the left and on the right.

We use the parametrisation

C? = eiδ?/2

(
a? e

i(α?−δ?/2) b? e
i(β?−δ?/2)

−b? e−i(β?−δ?/2) a? e
−i(α?−δ?/2)

)
, ? = `, r,

with a?, b? ∈ [0, 1] such that a2
? + b2

? = 1, and α?, β?, δ? ∈ (−π, π].
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Asymptotic evolution operators

Lemma (Spectrum of U?)

(a) If a? = 0, then U? has pure point spectrum

σ(U?) = σp(U?) =
{
i eiδ?/2,−i eiδ?/2

}
.

(b) If a? ∈ (0, 1), then U? has purely absolutely continuous spectrum

σ(U?) = σac(U?) =
{
eiγ | γ ∈ [δ?/2 + θ?, π + δ?/2− θ?]

∪ [π + δ?/2 + θ?, 2π + δ?/2− θ?]
}

with θ? := arccos(a?).

(c) If a? = 1, then U? has purely absolutely continuous spectrum

σ(U?) = σac(U?) = S1.
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Asymptotic evolution operators

Idea of the proof.

(a) Let K := L2
(
[0, 2π), dk

2π ,C
2
)

and F : H → K the Fourier transform

(FΨ)(k) :=
∑
x∈Z

e−ikx Ψ(x), Ψ ∈ H, k ∈ [0, 2π).

For f ∈ K and a.e. k ∈ [0, 2π)

(F U?F ∗f )(k) = Û?(k)f (k) with Û?(k) :=

(
eik 0
0 e−ik

)
C? ∈ U(2),

and the claim follows by solving for λ?,j(k) ∈ S1 the characteristic equation

det
(
Û?(k)− λ?,j(k)

)
= 0, j = 1, 2, a.e. k ∈ [0, 2π).

(b)-(c) With similar arguments we prove all the claims, except that U? has
purely absolutely continuous spectrum.
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Asymptotic evolution operators

Idea of the proof (continued).

For this, we use Mourre theory with conjugate operator

A?Ψ := 1
2

(
X?V? + V?X?

)
Ψ, Ψ ∈ D(A?) :=

{
Ψ ∈ H | V?Ψ ∈ D(X?)

}
.

V? := F ∗ V̂?F ∈ B(H) is the velocity operator for U? given by(
V̂?f

)
(k) := V̂?(k)f (k), f ∈ K, a.e. k ∈ [0, 2π),

where 

V̂?(k) :=
∑2

j=1 v?,j(k)Π?,j(k)

v?,j(k) :=
iλ′?,j (k)

λ?,j (k) ∈ R

Π?,j(k) ∈ B(C2) orthogonal projection for λ?,j(k).
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Asymptotic evolution operators

Idea of the proof (continued).

X? := F ∗X̂?F with X̂? a first order differential operator.

The coefficients of X̂? are chosen so that U? ∈ C 2(A?) with

U−1
? [A?,U?] = V 2

? .

This gives a Mourre estimate for U? on σ(U?) \ ∂σ(U?) because V 2
? is

strictly positive on σ(U?) \ ∂σ(U?).

Thus, the abstract theorem implies that U? has purely absolutely
continuous spectrum.
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Commutators in two Hilbert spaces

Commutators in two Hilbert spaces

• U, unitary operator with spectral measure EU( ·) and spectrum σ(U)
in a Hilbert space H

• U0, auxiliary unitary operator with spectral measure EU0( ·) and
spectrum σ(U0) in an auxiliary Hilbert space H0

• A0, self-adjoint operator in H0 with domain D(A0)

• J ∈ B(H0,H), identification operator
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Commutators in two Hilbert spaces

Theorem

Assume that

(i) U0 ∈ C 1(A0) in H0,

(ii) there is D ⊂ D(A0J
∗) ⊂ H with JA0J

∗ essentially self-adjoint on D ,
and self-adjoint extension denoted by A,

(iii) compacity conditions relating U,U0,A0 and J.

Then, if U0 satisfies a Mourre estimate with respect to A0 on Θ, U also
satisfies a Mourre estimate with respect to A on Θ.

Thus, if U ∈ C 1+ε(A) and U0 satisfies a Mourre estimate with respect to
A0 on Θ, then U has at most finitely many eigenvalues in Θ (multiplicities
counted), and U has no singular continuous spectrum in Θ.
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Structure of the essential spectrum

Structure of the essential spectrum

To study the essential spectrum of the operator U of the quantum walk,
we apply these commutator methods with auxiliary unitary operator

U0 := U` ⊕ Ur in H0 := H⊕H.

The operator U0 encodes the information of U` and Ur.
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Structure of the essential spectrum

As intuition suggests, we have :

Theorem (Essential spectrum of U)

σess(U) = σ(U0) = σ(U`) ∪ σ(Ur).

Idea of the proof.

U can be represented in a crossed product C ∗-algebra A ⊂ B(H), and the
image of U in the quotient algebra A/K (H) is equal to U0.

Thus,
σess(U) = σ(U0) = σ(U`) ∪ σ(Ur).
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Structure of the essential spectrum

What about the nature of σess(U) ?
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Structure of the essential spectrum

We define the identification operator J ∈ B(H0,H) as

J(Ψ`,Ψr) := j`Ψ` + jr Ψr, (Ψ`,Ψr) ∈ H0,

with

jr(x) :=

{
1 if x ≥ 0

0 if x ≤ −1
and j` := 1− jr.
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Structure of the essential spectrum

We choose A0 := A` ⊕ Ar in H0 as conjugate operator for U0.

• Since U? ∈ C 2(A?) with U−1
? [A?,U?] = V 2

? , we have

U0 ∈ C 2(A0) with U−1
0 [A0,U0] = V 2

0 and V0 := V` ⊕ Vr.

This gives a Mourre estimate for U0 on σ(U0) \ {∂σ(U`) ∪ ∂σ(Ur)}.

• Using Nelson’s commutator theorem, we show that JA0J
∗ is

essentially self-adjoint on

D :=
{

Ψ ∈ H | Ψ has finite support
}
,

with self-adjoint extension denoted by A.

• Using the short-range assumption, we show the compacity conditions
relating U, U0, A0 and J, and the regularity condition U ∈ C 1+ε(A)
for ε ∈ (0, 1) with ε ≤ min{ε`, εr}.

(some toroidal pseudodifferential calculus is needed)
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Structure of the essential spectrum

Combining these results with the abstract theorem in the two-Hilbert
spaces setting, we get :

Theorem (Spectrum of U)

For any closed set Θ ⊂ T \ {∂σ(U`) ∪ ∂σ(Ur)}, the operator U has at
most finitely many eigenvalues in Θ, each one of finite multiplicity, and U
has no singular continuous spectrum in Θ.

The set
τ(U) := ∂σ(U`) ∪ ∂σ(Ur)

is interpreted as the set of thresholds of U, in the same way the singleton
{0} = ∂ [0,∞) is interpreted as a threshold in the Schrödinger case.
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Structure of the essential spectrum

Gracias !
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